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ABSTRACT 

The effects of errors in (Y on the mechanism indicated by the Reich and Stivala procedure 
were studied. It was found that in some cases substantial errors, larger than those present in 
normal TG experiments, resulted in no change in the indicated mechanism. However, the 
method appears to be very sensitive to combinations of errors of certain types and to what 
the correct mechanism is. In those cases, errors in cy as small as 0.005 can result in an 
incorrect rate law being indicated as the correct one. 

INTRODUCTION 

There is a general notion that isothermal methods probably yield kinetic 
information of greater reliability than that obtained by nonisothermal 
methods [l]. Certainly that is true when procedures for analyzing (cu, T) 
data are based on a rate law of the type 

J& = $ (1 _ a) n e-E/R= 

where the symbols have their usual meaning. Numerous procedures are 
based on this rate law [2-71. However, solid state reactions are known which 
may follow numerous other types of rate laws based on nucleation, reaction 
order, diffusion, power laws, etc. [8]. Only a few of these can be reduced to a 
form involving (1 - (T)~ as shown in eqn. (1). Reich and Stivala have 
developed a powerful procedure based on nonisothermal data from heating 
rates differing by a factor of two which removes that difficulty [9]. Their 
procedure tests the fit of 12 different rate laws by computing the standard 
error of estimate (SEE) for each. However, the procedure is still subject to 
sample-to-sample variations [lo-131. We have begun an exhaustive compari- 
son of this method with isothermal methods to compare their consistency in 
indicating a correct rate law. In the work reported here, we have investigated 
the effects that errors in (Y have on the rate law indicated by the Reich and 
StivaIa method [9]. 
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METHODS 

The Reich and Stivala procedure requires values of a at various tempera- 
tures, obtained at heating rates differing by a factor of two [9]. The a: values 
used in this work were obtained for two reactions 

K, [ Cu(Go,),] - 2H20(4 + K, [Cu(W~h] 6) + =bOk) 
(pipH)3[Cr(NCS),] (s) + Cr(NCS),(s) + 3pipHSCN(g) (3) 

where pip = piperidine. These reactions have been the subject of an exten- 
sive comparison of isothermal and nonisothermal kinetic methods [14]. For 
the reaction shown in eqn. (2), the mechanism is the Avrami-Erofeev 
mechanism with an index of 2, A2: [ - ln(l - a)]‘/*, while the reaction 
shown in eqn. (3) follows a first-order, - ln(l - a), rate law [14]. These 
reactions were selected so that the effects of errors could be determined for 
reactions following different rate laws. 

For the first reaction, data for runs at 2.5 and 5°C mm’ were chosen, 
and for the second reaction, data from runs at 5 and 10 o C mm-* were used. 
Then, various amounts of error were introduced into the cx values by adding 
or subtracting a specific quantity to each value. This procedure was con- 
tinued with increasing amount of error until the error was large enough to 
cause the rate law indicated to change. In some cases, the (Y values for only 
one of the heating rates were altered and in other cases errors were 
introduced into the data from both heating rates. These procedures were 
followed so that the effects of errors arising in a variety of ways could be 
evaluated. All calculations were carried out using a microcomputer with the 
program in BASIC given by Reich and Stivala [9]. 

RESULTS AND DISCUSSION 

To determine how much error in ar was necessary to change the A2 rate 
law indicated for the reaction shown in eqn. (2), increments were added to 
the (Y values from the run at 5 o C min-’ while leaving the data from the run 
at 2.5”C rnin-’ unchanged. This procedure was repeated with increasing 
increments to (Y until the rate law changed. Table 1 shows the results of this 
iterative process. It can be seen that no change in the indicated best-fitting 
rate law occurred until the error added to (Y reached 0.056. At that point, the 
rate law indicated as the best-fitting one changed from A2 to A1.5. Up to 
that amount of error, A2 provided the best fit and Al.5 the second best fit. 
It can be seen that the SEE increases for fitting the A2 rate law, while that 
for the fit of the Al.5 rate law decreases as the error added to a is increased. 
Finally, when the error in (Y reaches 0.056, the SEE for the Al.5 rate law is 
smaller than that for the A2 rate law. 
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TABLE 1 

Effects of errors in (Y on the rate law and SEE for dehydration of K,[CU(C,O,)~].~H,O 

Point a Error in (Y 

5°Cmin-’ 1 0.226 
2 0.303 
3 0.358 
4 0.450 
5 0.520 
6 0.610 

2.5°Cmin-1 1 0.666 
2 0.764 
3 0.848 
4 0.912 
5 0.953 
6 0.975 

Best rate law A2 
SEEx 10’ 1.27 
Second-best law Al.5 
SEEx lo2 11.1 

+ 0.050 
+ 0.050 
+ 0.050 
+ 0.050 
+ 0.050 
+ 0.050 

0 
0 
0 
0 
0 
0 

A2 
3.91 
Al.5 
5.56 

+ 0.053 
+ 0.053 
+ 0.053 
+0.053 
+ 0.053 
+ 0.053 

0 
0 
0 
0 
0 
0 

A2 
4.16 
Al.5 
5.26 

+ 0.054 
+ 0.054 
+ 0.054 
+ 0.054 
+ 0.054 
+ 0.054 

0 
0 
0 
0 
0 
0 

A2 
4.25 
Al.5 
5.16 

+ 0.055 
+ 0.055 
+ 0.055 
+ 0.055 
+ 0.055 
+ 0.055 

0 
0 
0 
0 
0 
0 

A2 
4.33 
Al.5 
5.06 

+ 0.056 
+ 0.056 
+ 0.056 
+ 0.056 
+ 0.056 
+ 0.056 

0 
0 
0 
0 
0 
0 

Al.5 
4.47 
A2 
6.76 

Permutations of the various ways in which errors in (Y can be introduced 
leads to a prohibitively large number of possibilities. In order to simulate the 
types of errors that could be expected to arise experimentally, calculations 
were performed in which the errors were introduced in several patterns. In 
each case, the amount of error introduced was changed systematically until a 
change in the indicated rate law resulted. Error introduced to (Y was limited 
to a maximum of 0.100 in most cases assuming that experimental errors 
larger than this amount were unlikely. In a few cases, even errors of this 
magnitude produced no change in the best-fitting rate law. The results of 
these calculations are shown in Table 2 for the dehydration of 

K,PC,Qd,I - 2HP 
Several conclusions can be reached by examination of the data shown in 

Table 2. First, when error is introduced into only the data obtained at 5 o C 
mm-‘, the indicated rate law is much more sensitive to added errors than 
subtracted errors. An added error of only 0.056 causes a change in rate law 
while a larger subtracted error (- 0.124) is required. Also, when the error is 
an added one, the indicated best rate law changes from A2 to A1.5. When 
the error is a subtracted one, the best-fitting rate law changes from A2 to P3. 
However, when the 2.5 o C min-’ data set is altered and the 5 o C min-’ one 
is unaltered, the results are quite different. The added error required to 
change the indicated best-fitting rate law is larger (> 0.100) than that for the 
subtracted error (- 0.070). There is no change in the best-fitting rate law 
even when an error of +O.lOO is introduced by addition to the data from the 
2.5OC min-’ run. 
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When errors are introduced by addition to the (Y values for both the 2.5 
and 5°C min-’ runs, an error as large as 0.100 in the data points for each 
set produced no change in the best-fitting rate law. The calculation is very 
tolerant to errors of this type. An error as large as - 0.090 was required 
when subtractive errors were introduced to both data sets before the 
indicated rate law changed (in this case to P3). As expected, for some of the 
cases where large errors were required to produce a change in indicated rate 
law, the SEE increased substantially even though the indicated rate law 
remained unchanged. 

The effects of adding errors to one data set while subtracting errors from 
the other were also investigated. When the subtraction was from the data 
from the 5 o C min-’ run and the addition was to the data from the 2.5 o C 
min-’ run, errors of -0.100 and +O.lOO could be tolerated without a change 
in the indicated rate law (although the SEE is rather large, 0.190). Experi- 
mental errors of this magnitude are unlikely. When the errors were reversed, 
0.030 added to the data from the 5°C min-’ run and 0.030 subtracted from 
the data from the 2.5 O C mm-’ run, the best-fitting rate law was changed to 
A1.5. Experimental errors of this magnitude are entirely possible with the 
usual TG equipment. 

Finally, the effects of introducing errors of alternating signs were ex- 
amined. This was done by adding or subtracting increments to a in alternate 
data points. The results shown in Table 2 indicate that errors as large as 
0.100 still allow an A2 mechanism to be identified although the SEE is larger 
than with the unaltered data sets. When the increments in (Y for alternate 
data points are of unequal magnitude ( + 0.050 and -O.lOO), the indicated 
rate law is still A2, but the second-best-fitting rate law is changed to P3 from 
A1.5. When the increments were reversed in magnitude (+O.lOO and 
-O.OSO), the best-fitting rate law was still A2 and the second best was A1.5, 
although the SEE values were large. Even when the increments were -0.100 
and +0.200, the same best-fitting and second-best-fitting rate laws were 
indicated (A2 and A1.5). 

The decomposition of (pipH) ,[Cr(NCS) 6], which follows a first-order 
(Fl) rate law [14], was chosen as the second reaction for study to determine 
the effects of errors in (Y. Table 3 shows the unaltered data sets and the 
results of the calculations using data sets altered to include errors in (Y. The 
results show that there are significant differences between the effects of 
errors in this case compared with those for the dehydration of 
K,[CU(C,O,)~] .2H,O where the A2 rate law provided the best fit. 

First, the magnitude of the errors required to change the rate law are 
much smaller in this case. Adding 0.050 to the (Y values for the data from 
the 10’ C min-’ run results in the D4 rate law providing the best fit, while 
the Fl rate law provides the second best fit. Subtracting only 0.010 from 
each (Y for the 10 O C mm-’ run while leaving those for the 5 O C min-’ run 
unchanged results in the best-fitting rate law being R3. When the alterations 
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are to the 5 o C min-’ data set and the 10 o C min-’ set is unchanged, adding 
only 0.010 or subtracting 0.060 from each point results in rate laws other 
than Fl providing the best fit. Introducing error in (Y by addition results in 
the A3 rate law (with Fl being second best) and the introduction of error by 
subtraction results in a D4 best fit (D3 being second best). Second, when 
both data sets are altered by addition of error, no change in rate law is 
indicated when the error in (Y is 0.100. At a subtractive error of 0.060 to each 
data point, R2 is the indicated best-fitting rate law and Fl is the second 
best. When alternating errors of 0.100 are introduced into alternate data 
points in each set, the best-fitting rate law is still Fl. This is also true when 
the errors of 0.100 and -0.200 are introduced into alternating data points. 

Several conclusions can be drawn by considering the data shown in 
Tables 2 and 3. It is obvious that the Reich and Stivala procedure provides a 
powerful, versatile method for determining the mechanism of a solid state 
reaction from nonisothermal kinetic data. It is also evident that the method 
is highly resistant to certain types of errors, at least for the two reactions 
studied here. For example, adding as much as 0.100 to all the data points 
does not alter the indicated best-fitting rate law for either of the processes 
studied here. Subtracting as much as 0.060 (0.090 in one case) is required to 
change the rate law. If the errors are restricted to only one data set, adding 
at least 0.050 is required to change the indicated rate law. However, 
subtraction errors as small as 0.010 in one case (Fl case for the 10 o C mm’ 
run) cause a change in indicated rate law. Also, additive errors of 0.010 to 
the data for the 5 o C min-’ run in the Fl case result in a change in rate law 
best-fitting the data. Errors of this magnitude are entirely possible from 
sample-to-sample variations. 

The first-order process studied seems to be somewhat more sensitive to 
errors in (Y than the A2 process. For example, in one case an error of 0.005 
subtracted in one data set and the addition of that amount in the other 
results in a change in the best-fitting rate law to R3. These are extremely 
small errors and it is likely that any two consecutive runs could vary this 
much. With the errors introduced in other ways, alterations of 0.100 or 
greater are required to produce a change in the rate law. Errors of this 
magnitude are unlikely to occur with modern instrumentation. 

It is possible that reactions having other mechanisms than those studied 
here might show different sensitivity to errors in (Y. Also, there are other 
permutations of ways to introduce the errors. Finally, other experimental 
data sets could have been selected to use as a basis for the calculations. As a 
result of these factors, this work is probably representative of the behavior 
of the Reich and Stivala method. 

The rate law shown in eqn. (1) cannot represent the majority of the rate 
laws tested in the Reich and Stivala procedure. Consequently, this versatile 
method is the method of choice for analyzing TG data to determine 
mechanism. While the Reich and Stivala procedure can identify any rate law 
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that a solid state reaction is likely to follow, it is, nonetheless, still subject to 
sample-to-sample variations. Therefore, it is still desirable to compare data 
for several runs to have confidence that the mechanism indicated is not an 
artifact of the data chosen. It is unlikely that sample-to-sample variation and 
equipment errors can be sufficiently controlled so that a single pair of runs 
at two heating rates will give a reliable determination of the mechanism. 
This situation also exists, of course, for other types of determinations, 
including isothermal methods [14-161. When suitable data are available, the 
Reich and Stivala procedure reliably indicates the most likely mechanism. 
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