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ABSTRACT

Using the dimensionless coordinates A * and 7 *, having the following definitions

-l

where A is the equivalent thermal conductivity at the critical point T,(K), Ayp is the
thermal conductivity at the normal boiling temperature Ty (K) and A is the thermal
conductivity at any given temperature T (K) and

() [

where T, is the critical point temperature in K, an empirical equation
_ mT*(b+T*)

k+T*
has been established to calculate the thermal conductivity of saturated vapours over the entire
saturated vapour-liquid equilibrium range, from the triple point to the close vicinity of the
critical point, for separate compounds including inert and halogen compound families. The
proposed relation compares excellently in overall accuracy with other selected correlations
over the entire range of investigation.

A*

INTRODUCTION AND PROPOSED CORRELATION

Current advances in chemical engineering design to critical and supercriti-
cal states require a better understanding of heat transfer operations. Ther-
mal conductivity is an important factor needed in the solutions of these heat
transfer equipment design problems. Yet it is a difficult property to be
measured, especially at high temperatures and at the saturated vapour-liquid
critical point. The overall paucity of the high temperature and pressure
experimental data [1] is further accentuated by their questionable accuracy.
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Consequently, a set of theoretical and semi-empirical thermal conductiv-
ity prediction methods has been proposed for gases. The rigorous Chap-
man-Enskog theory [2,3] satisfactorily predicts the thermal conductivity of
dilute and moderately dense gases at low and moderate temperatures but it
fails at high temperatures [4] largely because of the incomplete understand-
ing of exactly how the internal degrees of freedom may contribute to the
various modes of energy transfer in polyatomic molecules [3,4].

Despite the relatively early investigations of the variations in thermal
conductivity with temperature of the saturated vapour and liquid states (see
for example the work of Liley [5,6]), there are, as yet, no entirely satisfactory
semi-empirical methods for calculating the thermal conductivity of pure
substances along the vapour-liquid saturated equilibrium curve.

Because these saturated equilibrium curves represent states of coexistence
of pairs of phases (i.e. liquid—vapour) and as the system is thermodynami-
cally univariant, we can say that for a pure substance at a given temperature
T and for a given value of A(T), a single value of P exists, satisfying the
thermodynamic restriction

A =g(T)=h(P) (1)
where s is the saturation state, and g and % represent g- and A-functions,
respectively. Equation (1) specifies that only the saturation temperature or
else the pressure is necessary in order to describe uniquely the thermal
conductivity, because choosing 7, will at the same time determine the value
of P, for the given substance. On the basis of eqn. (1), it appears entirely
feasible that a direct empirical relation between the saturated vapour ther-
mal conductivity and the temperature along the liquid-vapour saturated
equilibrium curve for the pure substances, could be developed.

To establish such a relation, we introduce new reduced state coordinates
(compare with Lielmezs et al. [7-11]), associated with the phenomenological
scaling and renormalization group theory [12], as follows

()i >

and

T*=(%—1)/(%—1) (3)

where A is the equivalent state thermal conductivity at the critical point T,

¥ Determined by means of the limiting critical state thermal conductivity obtained either
from direct experimental data extrapolations to the critical state (Table 1) or calculated by
means of a suitable correlative equation such as that given in the earlier papers by Comings
and Nathan [13], Owens and Thodos [14-16], Schaefer and Thodos [17] and Gamson [18], or
in the later work by Riazi and Fahri [19].
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Fig. 1. Reduced temperature T* vs. reduced thermal conductivity A* for rare gases.

¢ &, neon; a A, argon; @ ®, krypton; v
radon.

¥, Xenon; O o,

Anp is the thermal conductivity at the normal boiling point temperature, A
is the thermal conductivity at any given temperature and 7 is the critical
point temperature.

For the co-ordinate system given in eqns. (2) and (3), the thermal
conductivity of saturated vapour of a pure substance, can, therefore, be
expressed as follows (see Table 2 and Fig. 1)

mT*(b+ T*)

* —
A k+T* “)

where constants characteristic of the pure substance in its saturated vapour
state, m, b and k, have been obtained from the data sets given in Table 1 by
means of non-linear least-square regression methods.

The proposed relation (eqn. (4)) was generalized in terms of physical
property for given families of compounds, expressing coefficients k and b of
eqn. (4) as non-linear functions of the molecular weight

X=P()[MW - P(2)]* + P(3) (5)

where X is the running variable for m, k and b parameters while the
coefficients P(1), P(2) and P(3) are determined by means of non-linear
regression techniques. Parameters m, k and b are shown in Table 2 for two
compound families, the halogens and the inert gases. The k and b parame-
ters are both family and molecular weight dependent while m remains
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Table 2

Coefficients for use in equations (4) and (5)

Coefficients for use in eqn. (4)

Compound m k b

Ammonia 0.5826 0.1194 0.9252
Argon 0.6991 0.0368 0.5096
Bromine 0.6002 0.1149 0.8637
n-Butane 0.8871 0.1207 0.2959
Chlorine 0.7247 0.0549 0.4411
Ethylene 0.8232 0.0057 0.2268
Fluorine 0.6649 0.0774 0.6133
Iodine 0.6322 0.0627 0.6944
Krypton 0.7026 0.0724 0.5344
Methane 0.6780 0.0222 0.5314
Neon 0.6668 0.0508 0.5890
Nitric oxide 0.5268 0.1044 1.0944
Nitrogen 0.5860 0.0774 0.8278
Oxygen 0.6900 0.0862 0.5841
Radon 0.7089 0.0527 0.5114
Water 0.6086 0.1122 0.7827
Xenon 0.6809 0.0647 0.5491

Coefficients for use in eqn. (4) obtained from eqn. (5)—MW expansion of halogen
and inert gas families.

Compound family Coefficient expansion of eqn. (5)

m k b
Halogens 0.6555 —1.6288%x10¢ —2.6194%x10°¢
(MW —80.15)? +0.1009 (MW —113.6)? +0.6788
Inert gases 0.7058  —1.9289x10°°¢ -1.1373x10"®

(MW —144.1)2 +0.064913 (MW —3422.0)2 +0.3659

constant for the family considered and is independent of the compound
molecular weight.

The validity of the presented correlation was successfully tested by
comparing the RMS % error values of this work (Table 3) with the RMS %
error values as obtained using Eucken [20], modified Eucken [21] and hard
sphere [4] equations (see Table 4 for data used) for the low pressure range,
and then extending each one of these methods to high pressures using
Stiel-Thodos [22] relations.

DISCUSSION AND RESULTS

The simple corresponding states theory [23-25] for thermal conductivity
of pure fluids assumes the following conditions: the molecules interact with
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Table 3
Comparison of results in RMS % error *
Compound Proposed method Other methods
Eqn. (4) Eqn. (5) Stiel-Thodos Stiel-Thodos Stiel-Thodos
adjusted adjusted adjusted
Eucken modified hard sphere
equation Eucken equation
{20,22] equation [4,22]
[21,22]
Ammonia 227 - - - -
Argon 1.09 2.01 11.37 11.37 14.59
Bromine 1.19 1.80 - - -
Chlorine 1.90 3.68 8.76 513 -
Ethylene 1.31 - - - -
Fluorine 2.20 3.15 432 7.58 -
Iodine 2.54 2.23 - - -
Krypton 1.01 1.46 1.90 1.90 3.67
Methane 2.36 - - - -
n-Butane 1.36 - - - -
Neon 1.19 1.25 6.27 6.23 8.49
Nitric oxide 0.59 - ~ - -
Nitrogen 727 - ~ - —
Oxygen 117 - ~ - -
Radon 1.38 1.39 -~ - -
Water 35.53 - 3524.57° 3525.16 © -
Xenon 1.59 1.80 5.81 5.78 7.49

? Root-mean-square (RMS) percent error is given by

y (exp.—calc./exp.)” |/
i=1

Number of points, N

X 100

® These methods fail for water in the vicinity of the critical point; in contrast, the proposed
method yields reasonable results.

spherically symmetric two-parameter potential; molecular internal degrees
of freedom do not contribute to energy transport; and the molecular
translational degree of freedom is treated classically. In general [3,23,26-28],
these conditions are met in the cases of the dilute monoatomic gases.

For polyatomic fluids at low densities, internal degrees of freedom
contribute extensively to the thermal conductivity, and therefore, the devi-
ations from the results predicted by the simple corresponding states theory
[25,29] are large, even for conformal, chemically related substances. These
deviations may be attributed to the actual [3,4] process of energy transfer in
polyatomic molecules. A rigorous treatment to predict thermal conductivity
of polyatomic fluids would require, therefore, a comprehensive knowledge of
the separate and interactive behaviour of translational, rotational and vibra-
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PERCENT ERROR

100 12 48 m 196

TEMPERATURE °K
Fig. 2. Percent error in thermal conductivity vs. temperature for argon. ¢ ¢, calcu-
lated using Eq. (5); ¢------ @, calculated using Eq. (4); ¥ v, calculated by means of
Eucken and modified Eucken equations (both methods give the same resuit, Table 3);
o o calculated, hard sphere model.

tional degrees of freedom of a polyatomic molecule. For instance, Christen-
sen and Fredenslund [25] consider these aspects of energy transfer in their
recent extension of simple corresponding states theory to a generalized
corresponding states model of thermal conductivity.

The introduction of the reduced coordinates, A* and T* (eqns. (2) and
(3)) yielding a new semi-empirical relation of the form A* = f (T_*) in eqns.
(4) and (5), has enabled us to estimate thermal conductivity of saturated
vapour for a series of pure compounds for the entire saturated vapour-liquid
equilibrium range, from the triple point to the close vicinity of the critical
point, including halogen and rare gas compound families (see Tables 2 and 3
and Figs. 1 and 2).

The introduced dimensionless parameters A* and T * do not refer to the
magnitude and type of the intermolecular forces involved, the associated
transfer rates or the description of the molecular structure of the substance.
Instead, the proposed method requires knowledge of the vapour-liquid
critical point and the normal boiling point temperatures, respectively, the
corresponding thermal conductivities, and the molecular weight of the
compound (Table 1).

To extrapolate the saturated vapour thermal conductivity values into the
immediate vicinity of the critical point, we follow the earlier work [5,6,14-19]
and assume that the approach to the critical point is a smooth, monotonic
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continuation of the saturated liquid and vapour curves [5,6], which allows all
the experimentally observed irregularities to be smoothened out and not
shown [4,14-19]; consequently, the extrapolated limiting critical state ther-
mal conductivity (see the footnote a) is a finite apparent critical state
conductivity, A_. (Table 1). In effect, this thermal conductivity, A, in-
troduces a useful empirical point of reference (4,14-19,30] in the proposed
semi-empirical method (eqns. (4) and (5)). At any time of use it should be
remembered that this extrapolated A, parameter is not the same as the
“real” A at the critical point. The complex behaviour of thermal conductiv-
ity at the critical point has been discussed by Sengers and others [12,30-42],
where, for instance, the divergence of A for CO, in the immediate
neighbourhood of the critical point has been studied in detail.

Table 3 compares the results expressed in terms of RMS % error values
between the proposed method, using coefficients obtained from eqn. (4),
coefficients from molar weight expansion (eqn. (5)) and the Eucken [20],
modified Eucken [21] and hard sphere [4] equations for halogens, rare gases
and a set of selected substances. Because the methods listed are low pressure
correlations, these three test equations were corrected for pressure by means
of the Stiel-Thodos relation [22). Table 3 shows that the proposed method
has the smallest RMS % error values among all the test equations selected.
Figure 2 illustrates this graphically by giving the plot of RMS % error
against temperature for argon vapour. The proposed method applies equally
well to rare gases, halogens, hydrocarbons and to highly dipolar compounds,
such as ammonia. For the proposed method and the other test methods
used, the largest error is for water.

CONCLUSION

A semi-empirical correlation method has been developed which permits
the estimation of the saturated vapour state thermal conductivity along the
entire saturated vapour-liquid equilibrium curve, from the triple point to
the critical point. The characteristic constants of this correlation, & and b
for eqns. (4) and (5), have been obtained not only for individual compounds,
but also, using a molecular weight expansion, for members of their com-
pound family.

The range of application of the proposed method can be extended to
include other compounds, compound families and compound mixtures in
saturated and unsaturated states.

The results obtained and comparisons made (see Figs. 1 and 2, and Table
3) support the proposed methods.
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NOMENCLATURE

A, B, C, D coefficients in constant pressure ideal gas heat capacity
equation: C,=A + BT+ CT* + DT’

b, m, k characteristic coefficients of pure compound, see eqn. (4)

C, specific heat at any temperature

g(T) arbitrary function of temperature

h(P,) arbitrary function of pressure

k Boltzmann’s constant

MW molecular weight

N number of data points

P pressure

P(1), P(2), P(3) coefficients in eqn. (5)

t temperature at any state of the saturated vapour-liquid
equilibrium curve

T* reduced temperature

Tup T, normal boiling temperature, critical temperature (K) re-
spectively

X arbitrary (running) variable in eqn. (5)

Subscripts

c critical point

ec equivalent at the critical point

NB normal boiling point

P constant pressure

s saturated state

Superscripts

* reduced coordinates

Greek letters

A thermal conductivity

€ potential energy (ergs)

o collision diameter (A)
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