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ABSTRACT 

The calorimeter is treated in terms of the input-output relation of a linear time-invariant 
system described by a differential equation with constant coefficients. The transfer function 
of the system is derived under some initial conditions. The initial conditions are that the 
values of the input and output signals are zero when time t is negative (t < 0), but they are 
not necessarily zero when time t approaches zero from the right, t + 0 + . The procedure of 
the derivation of the transfer function involves a clear definition of the function which is zero 
for the negative value of time t using the double-sided Laplace transform. 

Initial values of the unit step response of the system and its derivatives are calculated in 
some cases. Some characteristic properties of the unit step response and its derivatives are 
obtained in connection with the transfer function of the system. Proportionality-the 
relationship between the time integral of the input signal and that of the output signal-is 
obtained. 

INTRODUCTION 

Some workers [l-3] have treated the calorimetric system as a linear 
time-invariant system which is described by the differential equation 

dy d”y +a d”-‘y + 
dt” 1 &“-’ “’ 

+a 
n-‘dt + any 

b d”x +b dm-lx + =- 
’ dt” ’ dt”-’ .** 

+b 
%+b,,,x 

m-l dt 
6, z 0 (1) 

where x = x(t) is the input variable, y = y( t) is the output variable and t is 
the time. In the calorimetric system, the input variable x(t) refers to the 
thermogenesis, i.e. the rate of internal energy or enthalpy change caused by 
the reaction or transition under investigation, or to the applied electric 
power to the calorimeter; the output variable y(t) usually refers to the 
temperature change or the temperature deviation from the convergence 
(steady state) temperature which is observed in the calorimeter experiment. 
Coefficients a,, a,, . . . , a, and b,, b,, . . . , b, are time-invariant constants. 
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Using the formula of the Laplace transform of derivatives [4] 

L[ f’“‘(t)] = s”f(s) - s”-‘f(0 +) - F2f”‘(O +) - . . . -.p-yo +) 

-p- “(0 + ) 

assuming all zero initial conditions 

(2) 

y(0 +) =y”‘(O +) = . . . =y’“-“(0 +) = 0 

x(0 +) = X(‘)(O +) = . . . = dm-yo +) = 0 
(3) 

and taking the Laplace transform on both sides of eqn. (l), we have 

( sn + u/-l + . . . +a,_,s + a,)jqs) 

= bOSm+blsm-l+ . . . +bm_ls+bm)x(s) ( (4) 

where J(s), j(s) and X(s) are the Laplace transforms of functions f(t), 
y(t) and x(t) respectively, and s is the parameter in the Laplace transform. 
The transfer function G(s) of the linear system (1) is defined as the ratio of 
j(s) to X(s); therefore, 

G(s) = f(s) bos” + by--l + . . . +bm_*s + b, - = 
44 S” + ulsn-l + . . . +a,_,s + a, 

(5) 

Some workers have added a condition [3,5] 

n>m+2 (6) 

or another slightly different condition [6,7] 

nzm+2 (7) 

to the above equations. Equation (5) which is derived under all zero initial 
conditions (eqn. (3)) is used as one of the fundamental equations for the 
deconvolution methods in thermokinetics [2,8-lo]. Margas and Zielenkie- 
wicz have also derived the rational form of the transfer function from their 
multibody model of a calorimeter [11,12]. 

However, it can be shown by simple examples that eqn. (5) applies in a 
linear system when conditions (3), (6) and (7) are not valid. The most simple 
equation of heat conduction calorimeters is the Tian equation [13] 

dy Cdt + hy =x(t) (8) 

where C is the heat capacity of the reaction vessel and its contents and h is 
the cooling constant. Assuming a zero initial condition 

y(0 +) = 0 (9) 

and applying the Laplace transform of eqn. (8) we obtain 
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Textbooks [14,15] usually give the formula of the Laplace transform of the 
impulse signal s(t) as 

L[6(t)] = 1 (II) 

We can obtain the output response u(t) for the impulse input x(t) = s(t) 
using eqns. (10) and (11) and the inverse Laplace transform 

y(t) = L-l( &) = $ exp( - $I) 

Thus, we have 

y(O+)=$+O 

(12) 

(13) 

Equation (13) is inconsistent with the zero initial condition (9). Comparing 
eqns. (5) and (lo), we can identify 

n=landm=O 04) 

for the Tian equation. Relation (14) also conflicts with conditions (6) and 

(7). 
Other examples can be found of the treatment of a two-body model of a 

calorimeter by Margas and coworkers [16,17]. They applied the Laplace 
transform to the differential equations of the two-body calorimeter system 
under zero initial conditions (3) and derived the transfer functions of the 
system. When the thermometer and heat source are located in the same 
body, the transfer functions (H,,(S) and HZ2(s), ref. 18, Tables I and II) 
show identifications n = 2 and m = 1, which are also in conflict with eqns. 
(6) and (7). Impulse responses of the system are calculated from relation (5) 
and the transfer functions are calculated for cases where the thermometer 
and heat source are located in the same body. The results (h,,(t) and h,,(t), 
ref. 18, Fig. 3) show that the initial values of the responses are not zero at 
t = 0 + in spite of the derivation of relation (5) and the transfer functions 
under the assumptions of zero initial values at c = 0 + . 

The above examples show that relation (5) can be applied to a linear 
system when initial conditions (3) are not valid, and that conditions (6) and 
(7) proposed by some workers, fail in some cases. 

Kailath [18] points out an error in the formula of the Laplace transform 
of s(t) described in many textbooks and states that eqn. (11) should be 
replaced by 

L[S(t)] = 0 (15) 

and 

L-[&(t)] = 1 06) 

In the above equations, the L_ transform is defined as 

L_[f(t)] = fmf(t) ewS’dt (17) 
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while the usual Laplace transform L is defined as 

Kailath’s statement suggests an alternative method for the derivation of 
relation (5) from the linear differential (eqn. (1)) which allows non-zero 
values at t = 0 + . The L_ transform of the derivatives gives 

L- [f'"'(~)l 
~s"f_(s)-s"-'f(~-)-~"-*f"'(~-)~~~ -,f(n-*)(0-)-f(n-l)(O-) 

(19) 

where f_(s) is the L_ transform of f(t). Assuming the initial conditions 

x(0-)=x”‘(O-)= . . . = x(m-‘)(O -) = 0 

Y(O -) =y’i’(O -) = . . . =y’“-l’(() -) = 0 
(20) 

and applying the L_ transform of eqn. (1) we obtain relation (5) which 
allows non-zero values of x( 1), y(t) and their derivatives at t = 0 + . 

However, eqn. (20) does not express the correct initial conditions in our 
problem. For example, function x(t) = tm and its derivatives satisfy eqn. 
(20), but they are not zero for t < 0. The correct initial conditions in our 
problem are that the functions and derivatives are all zero for t < 0 as 
follows 

x(t)=x(‘)(t)= . . . =x’“‘(t)= . . . =o I for t < 0 
y(t) =y(‘)(t) = . . . =y’“‘(t) = . . . =o 

(21) 

Equation (20) gives zero values only at t = 0 - and does not provide the 
correct zero initial conditions for t < 0. Moreover, the method suggested by 
Kailath does not provide clear insights into the behaviour of the functions at 
t = 0. The function 6(t) plays an important role in our problems, and the 
general theory of the delta function 6(t) is almost in the domain - cc < t -c co 

[19]. It is desirable to start our discussion from the argument in the domain 
- cc < t < 00. The double-sided Laplace transform L, is defined in the 
domain (- 00, 00) (see next section), and so the L, transform is preferred to 
the L_ transform which is defined in the domain (0 - , co). 

EXPRESSION OF FUNCTION WHICH IS ZERO FOR t < 0 AND THE DOUBLE-SIDED 
LAPLACE TRANSFORM 

The zero initial state function F(t) which is zero for t < 0 is defined by 

F(t) =fW44 (22) 
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In eqn. (22), the function f(t) and its derivatives f(“)(t) are continuous for 
- cc -C t < co, and u(t) is the unit step function 

u(t) =o, for t-CO, 

u(t)=1/2, for t=O (23) 
u(t) = 1, for t>O. 

The value of u(t) at t = 0 is defined in accordance with the theorem of the 
inverse Laplace transform at discontinuity [20]. The double-sided Laplace 
transform L, is defined as 

L,,[F(t)] =JW F(t) eeS’dt (24) 
--oo 

The following properties of function F(t) and the L, transform are easily 
obtained. 

Property Al, when t > 0 

F(t) =f(t) 

P(“)(t) =f’“‘( t) 

Property A2, when t -c 0 

F(t) = F’“‘(t) = 0 

(25) 

(26) 

(27) 

Property A3, when - cc < t < co 

F(t) =f(tMt) 

P’(t) =f”‘(t)u(t) +f(t)cqt) 

P’(t) =f”‘(t)u(t) + 2f’%(t) +f(t)cv(t) 
. . . . . . 

F’“‘(t) = k nc,f(“-“(t)uqt) 
r=O 

Property A4 

(28) 

J O” f@)(t),(t) dt =f’“-“(co) -f"-(O) (29) 
--m 

J 
O” f’“-“(t)&‘(t) dt = la f(n-r)(t)S(‘-‘)(t) dt 

-CO 

= (I~)~-~y~(,) _ r21 (30) 

The integration of the left-hand side of eqn. (29) is carried out as follows 

jrn f(“)(t)u(t) dt = [f(n-l)(t),(t)]:m - jm f(“-‘)(t)&)(t) dt 
-CO -cc 

=f’“-‘ym) - 
/ 
O” f(‘-(t)cS(t) dt 

=p-l)(,) _f;~lyo). 
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Equation (30) is proven by induction to be as follows. When Y = 1, we have 

J O” f’“-“(t) u(‘)(t) dt = Jrn 
--oo 

_OOJ(+)(t)S(r) dt =f+)(O) 

If we suppose the validity of eqn. (30) for r, then we have 

/ 
O” f(n-‘-1)(+(‘+‘)(t) dt 

-CC 

= 
J 

O” j+‘-r)(t)#‘)(t) dt 
--co 

= If’“-‘-“(r)6”-“(~)I”, _ J O” f(‘-)(t)#‘-l)(t) dt 

-CC 

=- J O” f(n-‘)(t)&(‘-‘)(t) dt 

= -(1~)~-1,(.-ly,) 
= (- l)y-lyo) 

Property A5 

Jm F(t) dt= iwf(r) dt (31) 
--oo 

J 
O” F’“‘(t) dt =f(“-I)( cc) (32) 

--oo 

Proof of eqn. (32) is as follows. From eqns. (28), (29) and (30), we have 

Irn F’“‘(t) dt = i .$$! f’“-“u”’ dt 
--M r=O -CO 

‘,C,{ p-1) (co) -f(“-yo)) + i .C,( -1)‘~‘p-“(O) 

r=l 

=f(n-1)(00) - f: “C,(4)’ p-(o) 
i r=O I 

=f’“-‘yoo) - (1 - l)“f’“-“(()) +J-‘yoo) 

Property A6 

L@(l)] = @0N = NfWl =m 
Property A7 

(33) 

LJ I”‘“‘(r)] = s”L[F(t)] = s”L[f(t)] = s”f(s) (34) 

The last property A7 is a remarkable property of F(t) and L,, and is proven 
by induction. When n = 1, we have 

Lb[ F”‘(t)1 = L,[f”‘(M~)l + bM~M~)l 
=L[f(‘)(t)] +Jm f(t)&(t) e-S’dt 

= {W(~)l -fF+)I +.m 
=sL[f(t)] =sf(s) 
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Supposing the validity of eqn. (34) for n and using a formal integration by 
parts, we take the L, transform of F(“+l)( t) 

Lb( F(“+l)( t)] = J’o F(“+l)( t) ewsr df 

= [i”‘(f) eesf]Too +s/a F’“‘(t) ees’dt 

= sL,( F’“‘(t)] = s’+iL;;(t), 

DERIVATION OF TRANSFER FUNCTION ALLOWING NON-ZERO VALUES OF 
INPUT AND OUTPUT SIGNALS AT r = 0+ 

Let us define the input and output signal functions X(t) and Y(t) 
respectively, as follows 

X(t) =x(t)u(t) 

y(t) =y(t)u(t) 
(35) 

In eqn. (35), x(t) and y(t) are continuous and differentiable functions of t 

in the domain - cc -C t < 00 and u(t) is the unit step function previously 
defined in eqn. (23). 

It is easily seen that the signal functions satisfy the following initial 
conditions 

x(+x(‘)(t)= . . . =X’“‘(t)= . . . =o t<O 

y(t) = y"'(t) = . . . = Y@)(t) = . . . =o 1 
(36) 

It is supposed that our calorimetric system is described by the following 
differential equation 

d”Y + a d”-‘Y + 
dt” 1 dtn_’ .*’ +‘,I-, dr dY + a,Y 

=- b d”X + b d”-‘X + 

’ dt” ’ dt”-’ . . . +b,_, F + b,,,X (37) 

The coefficients a,, a,, . . . , a, and b,, b,, . . _, b,, are time-invariant con- 
stants. In an actual calorimeter, the coefficients are determined by the 
thermal physical properties of the calorimeter system and change slowly 
with temperature. Therefore, the temperature is restricted for real calorime- 
try and treatments of a calorimeter as a time-invariant linear system are 
effectively applied during quasi-isothermal operation [21]. 

Taking the double-sided Laplace transform L, of eqn. (37), and using the 
properties A6 and A7 described in the previous section, we obtain eqn. (4) 
and the transfer function G(s) described by eqn (5). It is important that no 
restriction is made on the values of x(t) and u(t) at t = 0 + . 
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THE TRANSFER FUNCTION OF THE HEAT CONDUCTION CALORIMETER AND 
INITIAL VALUES OF THE UNIT STEP RESPONSE 

The heat conduction calorimeter used in the quasi-isothermal mode [21] 
can be treated by the present theory. The typical response of the heat 
conduction calorimeter to the unit step power input (the unit step response) 
is illustrated in Fig. 1 [22]. In some cases, a time delay d is observed in the 
response. The response reaches the final temperature h( cc) as t -+ co. It 
should be noted that the temperature change caused by the power input is 
always positive. The unit step response is measured in most experiments and 
the behaviour of the response shows the characteristics of the calorimeter 
system. The response with time delay Y,,(t) is written in the form 

Y,(t)=Y(t-d)=y(t-d)u(t-d)=y,(t)u(t-d) (38) 
In eqn. (38), Y(t) is the response with no time delay and is zero for t < 0; 
y(t) is a differentiable function in the domain - cc < t < 00. Subscript D 
denotes the response of the system with time delay d. Taking the Laplace 
transform of eqn. (38), we obtain [4] 

Y,(s) =j(s) epsd=JD(s) (39) 

The transfer function of a system with time delay d, G,(s), is therefore 

G,(s) = yD(s) = j+) e-sd 
44 w = G(s) emsd (40) 

where G(s) is the transfer function of the system with no time delay. 
Output reponses H(t) and H,(t) to the unit step power input (the unit 

step responses) are written in a similar form 

H(t) =h(t)u(t) (41) 

and 

H,(t)=H(t-d)=h(t-d)u(t-d)=h,(t)u(t-d) (42) 

where h(t) is a differentiable function of t in the domain - cc < t < co and 

Fig. 1. The typical response of the heat conduction calorimeter to the unit step power input 
(the unit step response). In some cases, it has a time delay d. It reaches a final temperature 
h(m) as t --) co. 
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subscript D denotes the response with time delay d. They can be written in 
the form of the Laplace transform as follows 

H(s) =X(S) (43) 

H,(s) = i;,(s) = h(s) essd 

Using eqns. (40) and (43), we can write 

h,(s) = G,(s)L[ u(t)] = G(s) ePsd(l/s) (44) 

and 

G(s) = sh(s) (45) 

Significant features which are contained in the unit step response in Fig. 1 
determine the properties of the transfer function of the heat conduction 
calorimeter. Figure 1 shows that 

H,(d+)=hD(d+)=h(O+)=O (46) 

Now, we can calculate the initial value of the unit step response of the 
calorimeter system when the transfer function of the system is given by eqn. 
(5). From the initial value theorem of the Laplace transform [4], we obtain 

h,(d+) = h(0 +) = lim s%(s) = lim G(s) 
s*cc s+m 

= lim 
b(/+6,.Y1+ . . . +b,_,s+b, 

s+cc Sn+u*.rn-‘+ . . . +a,_,s+a, 

= lim srnen 
6, + b,s-’ + . . . +bm_l~m-l + b,,,s-” 

s*cc 1 + a,s-’ + . . . +u,_p + a,s-” 
(47) 

Case 1. When m < n, we obtain 

h,(d+)=h(O+) =0 (48) 

Case 2. When m = n, we obtain 

h,(d+)=h(O+)=b,, (49) 

Case 3. When m > n, we obtain 

h,(d+) =h(O+) = co (50) 

The heat conduction calorimeter is the system in case 1. The system in 
case 2 has one of the necessary functions available for the study of 
thermokinetics because it shows an instantaneous finite response to the step 
input. The system can follow immediately the energy change caused by the 
reaction under investigation. The system in case 3 shows an infinite response 
to the unit step input, and therefore is not available for usual calorimeter 
experiments. 

Textbooks usually state that the linear system described by eqn. (1) 
should be accompanied by condition m < n. However, they do not state 
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clearly why condition m < n should be added to eqn. (1) Our result (eqn. 
(48)) shows that the linear system (eqn. (1)) should not be accompanied by 
the condition m > n, otherwise the system will give an infinite response to 
the unit step input. 

Next, we can calculate the first derived function, h$ (d + ) and h”)(O + ). 
When m -c n, from eqn. (48) we obtain 

hg(d+) =P(o+) = )iim_SL[h”‘(t)] = ;f”,s{sh(s) -h(O)) 

= lim sG(s) = lim P+‘-” 
b, + b,s_’ + . . . +&p-* 

1 + a,s-’ + . . . +a,s-” 
(51) 

s-cc S’cc 

When m + 1 < n, we obtain 

h$(d+)=h”‘(O+)=O (52) 

When m+l=n,weobtain 

@(d-t) = I+“(0 +) = b, (53) 

Case m + 1 > n is not possible since there is no integer n which satisfies 
m+l>n>m. 

When m = n, we already have h,(d+ ) = h(0 + ) = b,, and we obtain 

/I$‘@+) = h”‘(0 +) = 1’ S;;+i(s) - b0) 

= lim (b, - a,b,) + (b, - a,bJs-r + . . . + (b, - umbO)S-m+l 

s+ca 1 + uls-’ + . . . +u,S-m 

= b, - ulbo (54) 

Furthermore, we can calculate the second derived functions, hg)(d + ) 
and Iz(~‘(O + ). When m + 1 < n, we obtain 

h~‘(d+)=/P’(o+)= 1’ $lfnmsL[ Izc2)( t)] 

= )its{ S%(S) - sh(0 +) - h”‘(0 +)} 

= lim s3h(s) = lim s2G(s) 
s+oo S-+00 

= l im  Sm+2_n 6, + b,s_’ + . . . +b*sC” 
S-Q) 1 + a,? + . . . +u,Fn 

(55) 

When m+2<n,weobtain 

h$‘(d-t) = h’2’(0 +) = 0 (56) 

When m + 2 = n, we obtain 

h~‘(d+)=h’2’(0+)=b0 (57) 

The m + 2 > n case is not possible since there is no integer n which satisfies 
m+2>n>m+l. 
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When m + 1 = n, we already have h(0 + ) = 0 and h(‘)(O + ) = b,,, and so 
we obtain 

@(d+) 

=hC2’(0+)= lims{s2h(s)-b,} 
s-+00 

= lim 
(b, - a,&) + (b, - a2bo)F1 + . . . (b, - ambO)S-m+l - l+s-* 

s--r00 1+ a,s-’ + . . . +a,+,s-m-l 

= b, - a,b, (58) 

When m = n, we already have h(0 + ) = b, and ho) (0 + ) = b, - a,b,, 
and so we obtain 

hg’(d+) = h’2’(0 +) = 1’ ,~mms{ s2h(.s) - sh(0 +) - h(l)(O +)} 

= b, - a,h(O +) - a,h(‘)(O +) 

= b, - a,b, - a,( 6, - a,b,) (59) 

Similarly, we obtain 

h’,P’( d +) = I@‘(0 +) 

=bp-a,h(O+)-a,_,h(1)(O+)-...-a2h(P-2)(0+) 

- alh(P-lyO +) (60) 

By similar successive calculations, we obtain the following properties of 
the unit step response and the transfer function of the system. 

Property Bl. When the transfer function of the system is given by 

G,(s) = G(s) eCsd 

bos” + blsm-1 + . . . +b,,_ls + b,,, 
= 

e 

_sd 

sn+a*.P+ . . . +a,_,s+a, 
b, # 0 

the initial values of the unit step response H,(t) = h,(t)u(t - d) = h(t - 
d)u(t - d) are given as follows: when m < n, h,(d + ) = h(0 + ) = 0; when 
m = n, h,(d + ) = h(0 + ) = b,; when m > n, h,(d + ) = h(0 + ) = co. 

Property B2. When the transfer function of the system is the same as that 
described previously, then the initial values of the unit step response and its 
derivatives are given as follows: when m + r < n, h(0 + ) = h(‘)(O + ) = 
. . . = h”‘(O + ) = 0; when m + r = n, h”‘(O + ) = b,, h”+“(O + ) = 6, - 
a,h”‘(O + ) ,***, h”+p’(O + ) = b, - a h”‘(0 + ) - a,_,h(‘+‘)(O + ) - . . . -a,- 

h(P+‘-l)(O + ); when m > n, h(0 f ) “= h”‘(O + ) = hc2’(0 + ) = . . . = 00 : r = 

0, 1, 2,... 
The final value of the unit step response h(w) is given by the final-value 

theorem of the Laplace transform [4] as follows 

h,(w) = h(oo) = lim sL[h(t)] = liioG(s) = b,,,/a, 
s-0 

(61) 
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Here, it is assumed that G(s) does not contain any poles whose real part is 
zero or positive, because the unit step response of the calorimeter does not 
usually show any periodic or infinite behaviour as t -+ co [23,24]. 

Property B3. The final value of the unit step response of the system whose 
transfer function is given by eqn. (5) is &,/a,,. 

TIME INTEGRALS OF INPUT AND OUTPUT SIGNALS 

When the integrals /,“x( t) dt and jO”y( t) dt have finite values, we can 
obtain the following equation by integrating both sides of eqn. (37) from 
- cc to cc and using eqns. (31) and (32) 

Y (n-1)( co) + a,y(“-*)( co) + . . . +a,-,yb) + a,/%) dt 
0 

= box’“-“(Co) + b,x’“-*‘(co) + . . . +b,_, x(00) + bmLmx( t) dt (62) 

When 

x(m) = x”‘(C0) = x(*)(00) = . . . = x@-l)(00) = 0 

y(o0) =y’l’(ca) =y’*‘(co) = . . . =y’“-l’(co) = 0 

are valid, then eqn. (62) becomes 

(63) 

a” imy( t) dt = bmjomx( t) dt (64) 

Equation (64) is identical with the proportionality relation between the total 
change in the energy evolved in a calorimeter and the peak area observed in 
the time-temperature curve in the heat conduction calorimeter experiments 
121,251. 

Property B4. When integrals jomx( t) dt and jo”y( t) dt have finite values 
and the values of x(t), y(t) and their derivatives become zero as t --j co, the 
following relation is valid 

l,v(t) dt= $lmx(t) dt=h(m)jomx(t) dt 
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