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ABSTRACT 

The effects of errors in (Y on the mechanism of a solid state reaction giving the best fit to 
isothermal (a, t) data were investigated. Errors were introduced into part or all of each data 
set for first-order and A2 processes. In general, the errors required to produce a change in the 
indicated rate law were similar in magnitude to those required to produce a change in 
mechanism by the Reich and Stivala procedure for nonisothermal data. In some cases, errors 
in (Y as small as +O.OlO can result in a different rate law giving a better fit to the data. 

INTRODUCTION 

It is a common idea that isothermal methods are preferable to nonisother- 
ma1 ones for kinetic studies on solid state reactions [l]. Reich and Stivala 
have described a useful method based on data obtained from nonisothermal 
studies at different heating rates [2]. That method makes use of 12 com- 
monly encountered rate laws that cover a wide variety of solid state 
processes. Prior to the availability of that method, the usual nonisothermal 
methods were based on the rate law 

da _ A(1 _ a)” e-E/R= 
dt-p 

where the symbols have their usual meanings [3-81. However, isothermal 
methods can easily test a large number of rate laws. As the determination of 
(Y from any TG experiment is subject to some error, it is of considerable 
importance to determine the effects that errors in (Y have on the mechanism 
indicated. We have recently completed such a study which indicates that the 
Reich and Stivala procedure reliably indicates the correct mechanism in 
some cases even though relatively large errors in (Y are present. In other 
cases, small errors can cause a change in the indicated mechanism [9]. While 
the question of the effects that errors in (Y have on the mechanism indicated 
by the Reich and Stivala procedure has been answered, uncertainty remains 
as to the effects that such errors have on the mechanism indicated from 
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isothermal data. We have examined this problem and this report presents 
the results of that work. 

METHODS 

In isothermal kinetic studies, (Y is determined as a function of time, and 
the data are fitted to rate laws representing a variety of mechanisms. In this 
work, 17 different rate laws were employed using a least-squares routine. 
These rate laws are those normally encountered for solid state reactions [lo]. 

The ((.u, t) data sets from several sources were altered by introducing 
errors in (Y. Both experimental and calculated ((Y, t) data were used. The 
reaction 

(pipH),[Cr(NCS),] (s) + Cr(NCS),(s) + 3pipHSCN(g) (2) 

(where pip = piperidine) has been found to obey a first-order, Fl : - ln(1 - 
a), rate law [ll]. Experimental data for this reaction carried out at 235” C 
were used as one data set. Calculated data sets were generated using a 
first-order rate law with k = 0.015 min-’ and an Avrami A2: [ - ln(1 - CX)]~/* 
rate law, also with k = 0.015 mm’. 

Errors in (Y were introduced into each of these data sets using several 
patterns. These altered data sets were then analyzed according to 17 rate 
laws using a computer program written in BASIC. 

RESULTS AND DISCUSSION 

In TG experiments, errors in (Y could occur in a variety of ways. In some 
runs, all the values of (Y might be slightly low or high for some systematic 
reason. Errors might also be more random with some of the values being 
high and others being low. Consequently, the errors introduced into the (Y 
values were introduced in several ways. These include adding or subtracting 
an increment to all the (Y values, adding increments to half the (Y values 
while subtracting increments from the others, etc. These patterns were 
followed to simulate most of the types of errors that could be expected to be 
encountered in TG experiments. 

To determine how much error in (Y is required to change the indicated 
rate law, the calculated data set for the first-order rate law was altered by 
adding increments of 0.010 to each (Y value until the rate law changed. The 
results of this type of calculation are shown in Table 1. The change in rate 
law occurred at an error of 0.040 and with that amount of error the best 
fitting rate law was the two-dimensional diffusion control, D2: (1 - cr)ln(l 
- (Y) + (Y. Subtracting increments from each (Y also led to this being the best 
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TABLE 1 

Effects of errors in a on the rate law obtained from calculated (a, t) data fitting a first-order rate law 

Time 

(nun) 

a Error in OL a 

20 0.25918 + 0.040 

40 0.45119 + 0.040 

60 0.59343 + 0.040 

80 0.69880 + 0.040 

100 0.71681 + 0.040 

120 0.83470 + 0.040 

Best rate 

law b 

Corr. coeff. 

Fl 

1.00000 

D2 

0.99953 

Second-best 

rate law b 

Corr. coeff. 

D2 

0.99942 

Fl 

0.99951 

- 0.100 

- 0.100 

- 0.100 

- 0.100 

-0.100 

-0.100 

D2 

0.99880 

Fl 

0.99880 

+ 0.010 

+ 0.010 

+ 0.010 

- 0.010 

- 0.010 

- 0.010 

D2 

0.99971 

Fl 

0.99953 

- 0.030 

- 0.030 

- 0.030 

+ 0.030 

+ 0.030 

+ 0.030 

Al.5 

0.99769 

R3 

0.99730 

+ 0.040 

- 0.040 

+ 0.040 

- 0.040 

+ 0.040 

- 0.040 

Dl 

0.96420 

R3 

0.96384 

+ 0.030 

- 0.060 

+ 0.030 

- 0.060 

+ 0.030 

- 0.060 

Dl 

0.95620 

R2 

0.95599 

- 0.020 

- 0.020 

- 0.020 

+ 0.040 

+ 0.040 

+ 0.040 

Al.5 

0.99803 

R3 

0.99751 

a Error in (Y necessary to produce a change in the indicated rate law. 

’ The rate laws are as follows: Fl, -ln(l - cy); D2, (1 - CI) In(1 - a) + (Y; A1.5, [ - ln(1 - (Y)]*/~; R3, 

1 - (1 - a) ‘13; R2, 1 - (1 - a)‘/*; and Dl, a’. 

fitting rate law when the error reached - 0.100. Errors were also introduced 
by adding increments to (Y in the first half of the data set and subtracting 
increments in the last half. These procedures were used to simulate the 
systematic and random errors that might occur during TG experiments. In 
this way, a combination of errors of + 0.010 and -0.010 led to the D2 
mechanism being the best fitting rate law. Errors of this magnitude could 
well arise because of variations between TG runs. In each of these cases, the 
first-order rate law appears as the second-best fitting one. 

Table 1 also shows the effects of introducing subtractive errors in the first 
half of the data set and additive errors in the last half. In this way, errors of 
- 0.030 and + 0.030 cause the data to give a best fit with the A1.5: 
[ - ln( 1 - ar)] 2/3 mechanism with the R3: 1 - (1 - (Y)‘/~ giving the second 
best fit. The results obtained using other combinations of additive and 
subtractive errors within the same data set are also shown in Table 1. In 
most of these cases, the correlation coefficients are at least 0.998 so that a 
good fit of the data is sometimes provided by an incorrect rate law. 

To determine how experimental (a, t) data respond to errors in QI, data 
for the decomposition of (pipH),[Cr(NCS),] at 235 o C were used. These 
data and the effects of various types of errors in (Y are shown in Table 2. 
When errors are added to all the (Y values, the rate law changes from 
first-order to R3 when the error is +0.090. The first-order law provides the 
second-best fit in that case. Subtractive errors as large as -0.100 to all the (Y 
values did not change the rate law from Fl. Table 2 also shows the effects of 
introducing additive errors to the first half of the data set and subtractive 
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TABLE 2 

Effects of errors in OL on the rate law obtained for experimental (q t) data fitting a first-order rate law 

Time 

(tin) 

(Y Error in a a 

10 0.117 + 0.090 

20 0.244 + 0.090 

24 0.288 + 0.090 

30 0.347 + 0.090 

40 0.434 + 0.090 

50 0.515 + 0.090 

60 0.585 + 0.090 

70 0.644 + 0.090 

80 0.696 + 0.090 

90 0.731 + 0.090 

-0.100 

- 0.100 

- 0.100 

-0.100 

- 0.100 

- 0.100 

- 0.100 

- 0.100 

- 0.100 

- 0.100 

+ 0.020 

+ 0.020 

+ 0.020 

+ 0.020 

+ 0.020 

- 0.020 

- 0.020 

- 0.020 

- 0.020 

- 0.020 

- 0.100 

- 0.100 

- 0.100 

- 0.100 

- 0.100 

+ 0.100 

+ 0.100 

+ 0.100 

+0.100 

+0.100 

+ 0.030 

-0.030 

+0.030 

- 0.030 

+ 0.030 

- 0.030 

+ 0.030 

- 0.030 

+ 0.030 

- 0.030 

+ 0.020 

- 0.040 

+ 0.020 

- 0.040 

+ 0.020 

- 0.040 

+ 0.020 

- 0.040 

+ 0.020 

- 0.040 

- 0.050 

- 0.050 

- 0.050 

- 0.050 

- 0.050 

+ 0.100 

+ 0.100 

+ 0.100 

+ 0.100 

+ 0.100 

Best rate 

law b Fl R3 Fl Dl Fl R3 R3 Al.5 

Corr. coeff. 0.99983 0.99939 0.99936 0.99897 0.98910 0.98264 0.98261 0.99242 

Second-best 

rate law b Dl Fl R3 Fl Al.5 Fl Fl Fl 

Corr. coeff. 0.99841 0.99924 0.99713 0.99879 0.98905 0.98221 0.98233 0.99234 

a Error in a necessary to produce a change in the indicated rate law. 

’ The rate laws are as follows: Fl, -In(l - cy); R3, 1 - (1 - (r)‘/3; Dl, a2; and Al.5 [ -ln(l - a)]*j3. 

errors to the second half. In this way, the best fitting rate law changes from 
Fl to Dl: a2 when the errors are + 0.020 and - 0.020. When subtractive 
errors are used in the first half and additive errors are introduced into the 
second half of the data set, errors of -0.100 and +O.lOO still result in Fl 
providing the best fit. In this case, the correlation coefficient is only 0.9891, 
however. 

Introducing errors of alternating sign into alternate (Y values leads to R3 
giving the best fit when the errors are + 0.030 and -0.030, respectively. 
Table 2 also shows the effects of introducing errors in other patterns. It is 
obvious that in some cases errors within the range of normal experimental 
errors can cause a change in the indicated rate law. 

Having investigated the behavior of first-order processes toward errors in 
(Y, it remained to determine the sensitivity of data for some other rate laws 
toward these errors. Accordingly, a data set of ((Y, t) values was constructed 
for the A2: [ -ln(l - ‘Y)]~/~ rate law. These data and the effects of errors of 
several types in (Y are shown in Table 3. It can be seen that an additive error 
of + 0.030 to all the (Y values causes the best fit to be provided by the A3: 
[ - ln(1 - c.Y)]‘/~ rate law with the A2 rate law giving the second-best fit. 
Subtractive errors of -0.030 result in the best fitting rate law being Al.5 
with A2 giving the second-best fit. An error of + 0.040 in the first half of the 
data set and an error of -0.040 in the second half results in the best fitting 
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TABLE 3 

Effects of errors in (Y on the rate law obtained for calculated (q t) data fitting an A2 rate law 

Time 

(tin) 

(Y Error in (x ’ 

17 0.06296 + 0.030 - 0.030 + 0.040 - 0.062 + 0.060 + 0.045 - 0.030 
33 0.21732 + 0.030 - 0.030 + 0.040 - 0.062 - 0.060 - 0.090 - 0.030 
49 0.41738 + 0.030 - 0.030 +0.040 - 0.062 + 0.060 + 0.045 - 0.030 
66 0.62473 + 0.030 - 0.030 -0.040 + 0.062 - 0.060 - 0.090 + 0.060 
83 0.78776 + 0.030 - 0.030 - 0.040 + 0.062 + 0.060 + 0.045 + 0.060 

100 0.98460 + 0.030 - 0.030 - 0.040 + 0.062 - 0.060 - 0.090 + 0.060 

Best rate 
law b A2 A3 Al.5 R1.5 A2 A3 F2 A3 

Corr. coeff. l.OOOOO 0.99939 0.99916 0.99894 0.99884 0.96820 0.96180 0.99829 

Second-best 
rate law b R1.5 A2 A2 A2 R1.5 F2 Bl A2 

Corr. coeff. 0.99841 0.99909 0.99910 0.99871 0.99327 0.96819 0.96180 0.99818 

a Error in a necessary to produce a change in the indicated rate law. 

b The rate laws are as follows: A2, [ - ln(l - a)] ‘j2; A3, [-ln(1 - 01)]‘/~, R1.5, 1 - (1 - CY)~/~; A1.5, 
[ -(ln(l - a)12j3; F2, l/(1 - cy); and Bl, In[cY/(l - a)]. 

rate law being 1 - (1 - a) 2/3 The results of introducing errors in other . 

patterns are also shown in Table 3. 
The results shown in Tables 1-3 indicate that the rate law indicated from 

isothermal TG studies is rather sensitive to certain types of errors, but rather 
insensitive to other types of errors. In general, the magnitudes of the errors 
in I_Y needed to change the rate law are similar to those that result in a 
change in rate law from nonisothermal studies [9]. If the errors occur in 
certain patterns, inaccuracies in (Y as small as + 0.010 and - 0.010 can result 
in a different rate law providing a better fit to the data. It appears from the 
limited number of possibilities used here that the Fl case is somewhat more 
sensitive to errors in (Y than is the A2 case. This was also shown [9] for the 
Reich and Stivala procedure. It is likely that data fitting other rate laws 
would behave similarly with errors in (Y. 

From the results obtained in this work and those presented earlier for 
data from nonisothermal experiments [9] using the procedure of Reich and 
Stivala, it appears that there is no great difference between isothermal and 
nonisothermal methods with respect to sensitivity to errors in (Y. We have, 
however, found the reproducibility of isothermal TG runs to be somewhat 
better for the decomposition of (pipH),[Cr(NCS),] and the dehydration of 
K,[Cu(C,O,),] - 2H,O [ll]. When TG is the basis for the kinetic analysis, it 
appears that there is little difference between isothermal and nonisothermal 
methods for determining the mechanisms of solid state reactions. Given the 
magnitudes of the experimental errors present in (Y, it is imperative that 
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used to assign the basis of a limited 
number of experiments. 
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