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ABSTRACT 

The inverse filter method for obtaining unknown input variable x(t) from known output 
signal y(t) assuming an ordinary differential equation of the n th order of y(t) and mth 
order of x(t), is discussed (n > m). The differential equation leads to the transfer function of 
a rational form in the Laplace transform parameter, and a more straightforward inverse filter 
method based on the reciprocal of the rational form of the transfer function is presented. The 
inverse filterings are derived for special cases of n = 1,2 and 3, and are examined with the aid 
of two- and three-body models of a calorimeter. 

INTRODUCTION 

Recently, the inverse filter method has been developed during thermo- 
kinetic studies on the thermal process using a heat conduction calorimeter 
[l-5]. The method assumes a calorimeter system as described by the 
following differential equation 

d”Y ; a d”_lY + dY 
dt” ’ dt”-’ 

* * * +a,_, dt + a,y 

d”x +b dm-lx + 
= bodt” ’ dt”-1 (1) 

where t = time; x = x(t) = input variable = thermogenesis = rate of internal 
energy or enthalpy change caused by the reaction or transition under 
investigation, or applied electric power on the calorimeter; y = y( t) = output 
variable = temperature change observed in the calorimeter experiment; and 
al; . 0) a,, and b,, bl;.., b, are time-invariant constants. 

Assuming zero initial conditions 

x(t) = Xyt) = . . . =-p)(t) = 0 

y(t) = y”‘(t) = . - . = Y’“‘(t) = 0 1 for t -c 0 
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and taking the Laplace transform on both sides of eqn. (l), we have 

( Sn+arSn-l+ *** +a,-1s + %)J(4 

= bOSrn + blSm-l + * * * +b*+s + b&(s) 
( (3) 

where s is the parameter in the Laplace transform, and X(S) and j(s) are 
the Laplace transforms of x(t) and y(t) respectively [6]. Then, the transfer 
function G,,(s) of the calorimeter system can be expressed as a rational 
function in s 

G 

mn 

(+r(S)= ~l)Sm+b~sm-l+ *-- +b,_,s+tJ, P,(s) 
=- 

49 sn + u*sn-l + * *. +a,_,s + a, Qth, (4 

where 

P,(s) = bos” + bpsm-l + . . * +bm_g + b, (5) 
Q,(s)=s”+a,s”-‘+ *-* +a,_,s+a, (6) 
From examination of the step response, the output response for step input 
variable u(t) 

u(t)=0 for t<O 

u(t)=1 for t>O (7) 

we can get 

n>m (8) 

and can show that the zeros of Q,(S), called the poles of Gmn(s), are all real 
and negative [6]. 

The main purpose of the inverse filter method is to obtain the unknown 
input variable x(t) from the known output response data y(t) observed in a 
calorimeter experiment, assuming the rational form of the transfer function 
Gm,(s) in S. 

The development of the inverse filter method has three stages: the first 
stage consists of differential procedures [7-lo]; the second stage involves 
both the differentials and integrals [ll]; and the third is development of the 
method applicable to time-varying calorimetric systems, which are described 
by eqn. (1) with the time-variable coefficient a;(t) [12-171. 

FIRST STAGE OF THE INVERSE FILTER METHOD 

In early works on the inverse filter method, the following differential 
procedures were proposed. Dubes et al. suggested the following iterative 
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differential procedures [7] 

y*(t) =y(t) + q* 
\ 

dYl(d 
Y2W =Ylw + 727 

, (9) 

. . . . . . . . . . . . . . . . . . . . . 

Y&> =Yn-dt) +?I 
dYn-I(4 

& ! 

where 7r, 72, .. - are the first, second, - . - time constants of the calorimeter 
respectively. The above procedures are equivalent to the following proce- 
dures in the Laplace transform [2,7] 

Y,(s) = (3s + l)Yb) 
Y,(s) = (72s + UY,b) = (72s + WI + w4 

1 

00) 
y,.(sj =i~, +i>v,l;(sj. . . . . . . . . . . . . . . . . 

Procedures (9) and (10) give precisely the input variable x(t) and transfer 
X(t) when the transfer function is not zero and is represented by 

Tachoire et al. state that the method is the elimination of the poles of the 
transfer function because procedures (10) are the eliminations of the poles of 
G,,(s), -l/71, -l/72, - - - 131. 

Let us examine the above procedures (9) on the linear system (1) which is 
represented by 

where g(t) is the impulse response of the system [18]. Substituting (12) into 

eqn. (9) 

y&) = l’[ g(t - 6) + 71 ag(;; 5)]x(S) d5 + w(Ob(t) (13) 
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n(t)=ll[g(f-E)+~~ag(~r~) 
0 

+A Wt-0 +A a3dt-0 
2 

at2 
3 

at3 1 ~(0 dt 

(15) 

+ [&do) + A2P(O) + A3g'2'@)] 44 
+ [ A,g(O) + A,g”‘(O)] xy t) + A3g(0)x’2’( t) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

where 

A, = 71 + r2 + 73 

A, = r1r2 + r2r3 + r3r1 

and 
A, = r1r2r3 

When the impulse response g(t) of the calorimeter system is given by [19] 
g(t) = q e-f/7l + c2 ept/72 + c3 e-t/T3 + . . . 

= 2 q e-r/Tl , r1 > r2 > r3 > * - * 
i=l 

eqns. (12)-(15) become 

v(t) = i cijt e-(‘-5)/Tx(~) d< 
i=l 0 

yl(t)= z$2ci(l - :)J' e-('-E)/Tx(<) d[+rl(cl +c,+ .*.)x(t) I 0 y2(t)= k += Ci t 
e-(t-‘)/?x( 0 d[ 

i=3 [ I- yTJ 
I ri2 1 / 0 

+ 

[ 
(rl + r2)(c1 + c2+ 0.. 

)- i 
7172 

:+:+ . . . 

11 
x(t) 

+ r1r2(c1 + c2 + * * * )X”‘(t) 

y3(t) = k 1 _ $_ + A, _ A, q ’ e-(‘-‘)/7’x(<) dt 

i=4 i I ri2 1, r13 0 

+ 

[ 
A,(c,+c,+ ... )-A,(:+:+ . ..) 

+A3 
i 

zL+"'... 

71 d )I [ x(t)+ A,(c,+c,+ . ..) 

-A, :+:+ .-. x(‘)(t)+A,(c,+c,+ *..)xC2’(t) 
i iI 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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The integrals on the right hand of eqns. (17)-(20) show that the contribu- 
tions from the terms 

e-(‘-E)/7, 

in y,(t) decrease in succession as n increases. Alternatively, y,,(t) does not 
contain only the term x(t) but also the extra terms 

x(‘)(t), xC2)(t), * * * ) X+*)(t) 

When 

(21) 

g(o) = g”‘(0) = g(y)) = . . . = g’“-“(O) = 0 (22) 
JJ,,( t) does not contain the terms in eqn. (21). However, any validity of the 
condition in eqn. (22) is not generally proved in real calorimeter systems. 

The existence of the terms in eqn. (21) in y,(t) are shown in the 
experimental results of the application of the inverse filter method on the 
output response for the step input [8,11]. When the input variable x(t) is a 
step input, x(l) gives an overshoot peak at the beginning of the addition of 
the step input. In fact, Fig. 8 in ref. 8 and Fig. 6 in ref. 11 show that an 
overshoot peak appears in the curve of y,(t) simultaneously with the 
addition of the step input [8,11]. 

In their experiments, they start the input of the thermogenesis with time 
delay d, a lapse of time t = d from time zero t = 0. The resulting yd( t) from 
the inverse filtering of the input variable xd(t) with time delay d is 
represented by 

et&) = /olg(t - <)x,(5) d5 = j)(f - t%&> d5 (214 

where xd( t) = 0, t -c d. 

In this case, the filtered output variables yd,n(t) contain the extra terms 

Xk’( t), x8’(t),- - * ) xy-“( t) (2 14 

instead of terms (21) as shown in the following 

(134 
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yd&)=~f b-O+4 
[ 

dg(t-0 +A a’&-0 
at 2 

at* 

+A 3 a3g(t -‘I x (0 d[ 1 at3 d 

+ [4@) + ~2Pto) + ~3g'*'to)] xl&) 

+ [ A,g(O) + A,g”‘(O)] xf’( t) + A,g(o)x~*)( t) tw 

SECOND STAGE OF THE INVERSE FILTER METHOD AND ALTERNATIVE 
METHOD 

Cesari et al. have presented the inverse filter method which eliminates 
both the poles and zeros of the transfer function of the calorimeter system 
[ll]. However, their method is complicated because it eliminates the poles 
and zeros separately, and is plagued by the amplification of noise through 
repeated differential operations in the elimination of the poles. 

Alternatively, the following method is a more straightforward way of 
obtaining the unknown input variable x(t) from the known output signal 
y(t). From eqns. (4) and (8) 

x(t) = L-%+)/G(s)] 

=L-’ y(s) 

[ 
sn+a,s n-l + **- +a, 

bo,P + blF1 + * * * +b, 1 

n>m (23) 

where L-’ is the operator of the inverse Laplace transform. The right hand 
of eqn. (23) can be calculated for some special cases and is shown as follows. 

CaseI.0: n=I, m=O 

1 s+a, 1 
G,,(s)= b, =Gs+z 

1 G(t) 
x(t) = b- 

o dt + ?YW 
0 

(24 

(25) 

Equation (25) has the same form as the Tian equation, the most simple for 
the heat conduction calorimeter [20]. 

Case2.0: n=2, m=O 

1 s* + a,s + a2 1 
---= a1 

Go*(s) b0 

=6,s*+bDs+z (26) 



x(t) = + d2y(t) + a, dy(d 
bo dt2 b, dt 

+ ?v(t) 
0 
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(27) 

Equation (27) based on transfer function (26), represents the two-step 
filtering in the early studies of the method [6]. 

Case 2.1: n = 2, m = 1 

1 s2 + a,s + a, 
-= 
Gl2 (4 b,s + b, 

(2% 

Equation (29) based on transfer function (28) is identical with the inverse 
filtering presented by Cesari et al. in the second stage of the studies of the 
method [ll]. They state that inverse filtering is the elimination of two poles 
and one zero of the transfer function. 

Case3.0: n=3, m=O 

1 s3 + a1s2 + a2s + a3 -= 
Go,(s) b0 

1 
=--s3+--s +a,s+a, a1 2 

bo bo bo bo 

1 d3Y(d x(t)=-- ~ + a, d2y(t) + 3 G(t) ___ 
bo dt3 bo dt2 b, dt 

+ ?Y(d 
0 

(30) 

(31) 

Equation (31) is identical with the third-order correction presented by Point 
et al. [8], and was used in the thermokinetic study of the hydration of 
cement by Yung et al. [21]. 
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Case 3.1: n = 3, m = 1 

1 s3 + a1s2 + a2s + a3 
-= 
G3W b,s + b, 

Case 3.2.a. n = 3, m = 2, bf - 4bo b, > 0 

When equation 

bos2 + b,s + b, = 0 

has two real roots - (Y and -p, we have 

1 s3 + a1s2 + a2s + a3 
-= 
G23(s) b,s2 + b,s + b, 

s3 + a1s2 + a2s + a3 

= b,(s+a)(s+p) 

1 1 b1 =-_s+- a,-- +- - 
b0 b0 i 1 b0 

c + D 
s+a s+P 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

x(t) = 1 dJw 
b,, dt 

+ hWe- / act--5) + De-P(‘-t)] ,-J[ 
(38) 

0 

where 

c= bo,a1_,,{-a3+~(al-~)+~[a2-~-~(a~-~)]} (39) 

D= ,,d_,,(-a3-~(al-~)-~[a2-~-~(a~--~)]} (40) 
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Case 3.2. b: n = 3, m = 2, bf - 4b0b, = 0 

When eqn. (36) has two identical real roots -(Y, we have 

1 1 1 -=-_s+- 
G,,(s) b, ~CI cf)2 

(41) 

x(t) = L dy(t) ---+:(a,-?)y(t)+lby(S)[C+D(t-t)] e-a(t-E)d[ 
b0 dt 

(42) 

where 

(43) 
(44) 

Case 3.2.~: n = 3, m = 2, b: - 4b0b, < 0 

When eqn. (36) has two imaginary conjugated roots - (Y + jp and - (Y -j/3, 
we have 

1 s3 + a1s2 + a,s + a3 -= 
G,,(s) b0s2 + b,s + b, 

s3 + a1s2 + a2s + a3 = 
b, [ (s + a)’ + P’] 

1 1 4 =-s+- a,-- + 
i 1 

c(s + Cx) D 

b0 bll bll (s + a)2 + p’ +( s + o1)2 + p’ 
(45) 

-&) = L dJw + f a1 - g y(t) 
bodt 0 i i 0 

CcosB(t-e)+$ sinP(t-5) 1 [ exp -&(t-0 G 
0 1 (46) 

where 

(47) 

(48) 
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LINEAR MODEL OF CALORIMETER WITH LUMPED CONSTANTS AND TRANS- 
FER FUNCTION 

The linear model with lumped constants produces an ordinary differential 
equation between the input variable x(t) and the output signal y(t) which 
leads to the transfer function of rational function in the Laplace transform 
parameter S. The model gives an insight into the transfer function of a real 
calorimeter in terms of the structure of the model. Zielenkiewicz and 
coworkers have carried out extensive studies on the models of a calorimeter 
with lumped constants and have given the transfer function for the various 
models [22-321. Their results serve to interpret the behaviour of the transfer 
function. 

Tachoire et al. and Cesari et al. have studied the influences of the 
positions of the source of the thermogenesis on the transfer function of a 
calorimeter [3,11]. They state that when the source is near the temperature 
detector, the transfer function is zero and elimination of both the zero and 
the poles gives a good reconstruction of the input variable. Their statements 
are in agreement with the results of the two- and three-models of a 
calorimeter as shown in the following. 

The two-body model gives the transfer function of which the denominator 
Q,(S) is second-order in s (n = 2 in eqns. (l), (4) and (6)) [22,24,28]. The 
order m of numerator P,(S) is determined by the mutual positions of the 
thermometer and source of the thermogenesis. When the locations of the 
thermometer and source are at the same body, the model gives m = 1 and 
one zero of the transfer function (see H,,(s) and Hz2( S) in Ref. 28). 

The three-body model gives similiar results [23,25]. The model shows that 
the denominator of the transfer function is the third order in s (n = 3 in 

eqns. (I), (4) and (6)), and the order of the numerator is determined by the 
mutual positions of the thermometer and source of the thermogenesis. When 
the thermometer and source are located at the same body, the transfer 
function has two zeros (see H,,(S) and H,,(S) in ref. 23). When they are 
located at the two bodies adjacent to each other, the transfer function has 
one zero (see H2r( S) and Hz2( s) in ref. 23). When they are located at two 
separate bodies, the transfer function does not have a zero (see H31(s) and 
HI*(s) in ref. 23). 

The three-body model provides an insight into the roots of eqn. (36). For 
example, numerator P*(s) of transfer function H32(s) in ref. 23 is 

M4 = j& [ TlTZS2 + ( Tl + T2)s + 1 - K, + K,K,] 
1 2 3 

where T,, T2, T3, K, K, and K, are constants represented by the heat 
capacities of the bodies and the heat transfer constants between the bodies, 
and have the following properties 

T,, T,, T3 ’ 0 (50) 

1 >K, K,, K,>O (51) 
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The discriminator of eqn. P2( s) = 0 is 

(T, - T,)*+ 4T,T,K,(l -K,)] > 0 (52) 

The coefficients of eqn. (49) are all positive. Thus, eqn. (49) has two real and 
negative roots. With the similar examination of the transfer function H,,(s) 
in ref. 23, we can arrive at the following conclusions. When the source of the 
thermogenesis is located in the neighbourhood of the thermometer and the 
behaviour of the calorimeter is approximated by the transfer function 
G,,(s), the zeros of G,,(s) are both real and negative, and inverse filtering 
in case 3.2.a (eqn. (38)) is valid for the calorimeter. 
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