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ABSTRACT 

The partition function of translation in a cubical box of very small volume has been 
studied. Decreasing dimensions of the cube have been found to cause gradually larger 
deviations from the conventionally used partition function. This is manifested in the 
corresponding values of thermodynamic quantities. Special attention was paid to the molar 

internal energy of translation, and marked differences from the conventional term of 3RT/2 
were observed for very small dimensions of the cube, this energy term being increased 
without limitation in the limiting case. These results were applied to the hydrogen isotopes 
occluded in elementary cubic cells of Pd. The results are interpreted as a possible auxiliary 
contribution to the overall mechanism of the low-temperature nuclear fusion presumed to 
take place in a Pd electrode fed with deuterium. 

INTRODUCTION 

Recently, attention has been paid to the limiting behaviour of the parti- 
tion functions of motion with quantum models exhibiting a quadratic 
dependence of the energy spectrum on the quantum number(s). This espe- 
cially applies to the partition function of free internal rotation in molecules 
[l-6] as well as to that of translation in a rectangular prism [7-lo]. From a 
practical standpoint, the more interesting results have been those for free 
internal rotation, especially in the case of small molecular complexes. These 
species can exhibit relatively very small values of reduced moments of 
inertia and fairly low temperatures are needed for their observation. Under 
such conditions, the free internal rotation should make a rather low, but 
always positive, contribution to the entropy values. However, the conven- 
tional one-term partition function [ll] can, under these conditions, lead to a 
contribution which is paradoxically negative and decreases without limita- 
tion with decreasing temperature [1,2]. In spite of this, the partition function 
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was used in a number of studies without this serious defect being recognized. 
It is already obvious that this failure of the conventional partition function 
of free internal rotation is caused by replacement of rigorous summation in 
its usual derivation by approximative integration. On this basis, several-term 
formulas have been constructed [1,6,12,13] which apply well, at least within 
the sections of intervals where the conventional formula fails. Nevertheless, 
the technique of direct summation with an evaluation of the summation 
residuum was recommended [4,5] as the single universal means for this 

purpose. 
The situation in the case of the translational partition function has been 

less interesting up to now, although it was shown that there exists, in 
principle, some residual dependence of the exact form of this function upon 
the vessel shape [7-lo]. Nevertheless, it was obvious that this dependence 
would be quite insignificant in usual chemical situations. Potential applica- 
tions were expected either at low temperatures (with the presumption of a 
transition to the relevant quantum statistics) or in vessels of very small 
dimensions, e.g. in the region of inclusion phenomena, in clathrates or 
zeolites or in cavities serving to simulate the dissolution of gases [14]. The 
carbon aggregates C,, and C,, [15] are recent examples of such type of 
cavities. The first pieces of information [16] about the presumed low-temper- 
ature nuclear fusion in the Pd electrodes fed with deuterium provide another 
impetus to study the thermodynamics of translational motions in small 

volumes. 

RESULTS AND DISCUSSION 

General reasoning 

The energy spectrum of a particle of ideal gas of mass m in a cubical box 
of edge a is given by the well-known relation [ll] 

E 
h* 

n1n2n3 
= -(no+.:+.:) 

8ma* 
0) 

where ni=l, 2, . . . are quantum numbers and h stands for the Planck 
constant. The translational partition function for this cube is then given by 
the summation 

(2) 

where k is the Boltzmann constant and T is the absolute temperature. For 
sufficiently small u values it is possible to replace the summation (2) by the 
integration from which the conventional formula of the translational parti- 
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tion function is obtained fll]. For 1 mol of ideal gas the partition function 
of the whole system reads as follows (corrected boltzons) 

Q = qN/N! (3) 
where N is Avogadro’s number. In these terms the molar internal energy E 
generally is [ll] 

V,N 
where V is the volume of the system. In terms of the rigorous summation 
we obtain eqn. (5) for the molar internal energy of translational motion 

E i2 exp( -ai2) 
i=l 

fj exp( - ai2) 
i=l 

(4 

(2) 

(5) 

where R stands for the gas constant. If the transition from the summation to 
integration is applied to sufficiently small CT, then eqn. (5) is reduced to the 
usual expression 3RT/2. For higher values of the reduced quantity u eqn. 
(5) can be determined with any chosen precision by the technique of direct 
summation [5]. The results thus obtained are shown in Fig. 1. The conven- 
tional formula for the translational partition function, which provides the 
uniform term of 3RT/2, does not allow for any dependence of the molar 
internal energy upon the mass of particle of the ideal gas or upon the 
dimensions of the cube. Figure 1, however, demonstrates that in a more 
rigorous approach such dependences do exist, even though they are not very 
distinct except at small values of a (and/or of the particle mass and/or of 
the temperature). In our context, it is significant that if the parameter u 
grows without limitations, then the energy eqn. (5) also grows without 
limitations. 

Application to the system Pd-hydrogen isotopes 

The first pieces of information [16] about the potential low-temperature 
nuclear fusion in the Pd electrode fed with deuterium indicate that this 
problem also has molecular-thermodynamic aspects. These, first of all, 
include the question of accommodation and behaviour of deuterium in 
elementary cells of Pd. This metal has an f.c.c. lattice with a lattice constant 
[17] of 3.884 x 10-t’ m. The hydrogen occlusion being sufficient, this lattice 
is broadened 1171 up to a lattice constant value of 4.020 X lo-“’ m. It seems 
appropriate to treat the motions of hydrogen isotopes in the elementary cells 
of Pd simply as translations in small cubes. There is, of course, a certain 
difference here. The above discussion dealt with 1 mol of ideal gas com- 
pressed in a single cube. Now, the whole bulk of metal Pd is to be 



Fig. 1. Dependency of the reduced molar internal energy of translation in a cubical box, 
E/RT, on the reduced, dimensionless quantity u (the dashed line indicates the result from 
the conventional translational partition function approach). 

represented by a large number of (mutually interacting) elementary cubic 
cells, thereby reducing dramatically the number of particles moving in a 
single cube. Nevertheless, in a state of thermodynamic equilibrium it is 
possible to consider the motion of each occluded particle as approximately 
translation in a small cube and, hence, to adopt the energy spectrum (1). 
Although a different combinatorial reasoning is now valid for the system 
partition function (3) nevertheless the one-particle partition function q is 
significant for the temperature differentiation (4). Therefore, in this case we 
also can evaluate the molar internal energy according to eqn. (5). 

The situation in the elementary cell of Pd, of course, corresponds only 
approximately to the rectangular potential in a cubic box; the real potential 
will have a more rounded shape. This can be interpreted also as an effective 
lowering of the edge length a of the model cube. Therefore, three different 
dimensions of the model cube were considered (Table 1). Besides both the 
above-mentioned values, a third value of the edge length a was considered 
which was derived from the value of 4.020 X lo-*’ m by subtracting the 
reported [18] twofold metallic radius of Pd (1.37 x lo-” m). The results of 
Table 1 indicate that, even at room temperature, the motion in a small area 
can lead to a significant increase in the kinetic energy of the occluded 
species as compared with the conventional description of translational 
motion. 
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TABLE 1 

Molar internal energy a E of species accommodated in Pd cells at room temperature 

ff Eb 
(lO-l” m) RT 

‘H *D 3T 4He 

Any ’ 1.5 c 1.5 c 1.5 c 1.5 c 
4.020 1.715 1.646 1.617 1.601 
3.884 1.723 1.651 1.622 1.604 
1.280 2.473 2.078 1.942 1.869 

a The transiational energy contribution is considered only. 
b Reduced dimensionless representation; R denotes the gas constant and T room tempera- 

ture (T = 298.15 K). 
’ Results from the conventional translational partition function formula. 

Further progress in understanding these problems will be possible after a 
more detailed investigation of the potential profiles in the Pd cells and 
elucidation of the form of the hydrogen isotopes present (e.g. the form of 
positively charged clusters [19]). Also, it will be necessary to pay attention to 
a more complete statistical-mechanical description of the occlusion of 
hydrogen in Pd inclusive of the transition towards quantum statistics. In 
conclusion, this work indicates a possible substantial increase in kinetic 
energy of particles placed in small spaces. This represents a possible aux- 
iliary cont~bution which also should be considered when constructing 
[20-221 the overall mechanism of the low-temperature nuclear fusion pre- 
sumed to occur [16] in the Pd electrode fed with deuterium. 
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