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ABSTRACT 

The graphical representation of the error in a one-dimensional variable is a sector, similar 
to an ellipse for a two-dimensional variable. If the slope a and the constant b of the straight 
line y = ux + b are estimated by the least-squares method, the geometrical properties of the 
error ellipse are determined by values of the independent variables, e.g. the tangent to the 
main axis is equal to minus the average value of the independent variable. If this same 
experiment is repeated, the estimated values of the straight line coefficients will fall inside the 
error ellipse, giving points lying on a straight line in a system with a and b axes. This 
phenomenon is more obvious when the experiments have a bigger experimental error. 

A similar effect will occur when different experiments are really the same, e.g. when the 
experimental error is larger than the differences between experiments. 

INTRODUCTION 

The estimation of linear equation coefficients is a procedure most fre- 
quently used for elaboration of the experimental results. The least-squares 
method used here is widely known and accepted [l]. According to general 
opinion, being “strictly scientific” it prevents mistakes. However, it is 
intriguing how frequently data indicating the relationship between the linear 
equation coefficients can be found in the literature. 

For example, a linear relationship has been observed between the natural 
logarithm of the reaction constant and the activation energy, for many 
groups of experimental results. This relationship is presented either as the 
so-called linear compensation law [2] or is hidden in the tabulated data. 

There are several publications devoted to justification [3,4] of the ob- 
served relationship; there are also several publications [5,6] denying its 
existence and attempting to prove that the relationship results from inaccu- 
racy in the measurements. 
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The aim of this work is a re-analysis of the problem of the estimation of 
linear equation coefficients using the least-squares method, and to demon- 
strate the existence of an apparent relationship between these coefficients. 

As there is a lack of understanding of the meaning of the error of the 
estimated values, there is a subsequent overestimation of the accuracy of the 
measurements. The linear compensation law, and others which are similar, 
most frequently result from this. 

Theoretical considerations have been the basis for a re-calculation of sets 
of experimental results selected from recent publications, in order to de- 
termine whether a relationship exists between the linear equation coeffi- 
cients, and whether it results from the estimation error or is a reflection of 
actual differences between the experiments. 

THE COVARIANCE MATRIX OF THE LINEAR EQUATION COEFFICIENTS 

According to the method of least squares, the best values of the straight 
line coefficients 

y=ax+b (1) 

describing a given set of experimental results, are calculated from the 
equations 

a”= CYX + CY C/n 

cx* + (cx)*/n 

and 

d = cy/n - a”Cx/n 

where 
i=n 

Cx = C xi, etc. 
i=l 

u and b are the coefficients of the linear equation and n is the number of 
experiments 
It has been assumed that the values measured, y,, y2,. . . ,y,, are statistically 
independent and have an error of normal distribution. The values 
&,X2,..*, x, are assumed to be correctly determined. 

The values of the linear equation coefficients, calculated using eqns. (2) 
and (3), are the estimate of the two-dimensional normal random variable 
with the covariance matrix 

M(a, b) = s*(a) cov(a, b) 

cov(a, b) S*(b) 1 
(5) 
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The M( a, b) matrix elements are calculated according to the so-called error 
propagation principle 

M(a, b) =P=-M.P (6) 

where 

PT = aa/aYl aa/aY2y . . ‘) aa/aYn 
way, way,, . . . , way, 1 (7) 

M=diag[w,...,p] (8) 
where p is the standard deviation. 

By appropriate differentiation of eqns. (2) and (3), using eqns. (6) and (7), 
the following relations are obtained 

~2(u)=EL/[cx2-(cx)2/n] 
s2(b)=p(l/n+Z2/[~x2-(~zc)2/~]) 

cov(ab) = p( -Y/[ cx2 - (&)2/n]] 

69 

(10) 

(11) 
The best Al. value is given by the expression 

/Rs2(y,)= i (yi-c?xi-B)2/(n-2) 
i=l 

(12) 

where X denotes the mean value of xi. 
The values of the M(a, b) covariance matrix elements depend (with p 

factor accuracy) only on the value of the so-called independent experimental 
variables xi, x2,. . . ,xn. 

THE RANDOM VARIABLE DISTRIBUTION 

In the case of the two-dimensional random variable 1, its density distri- 
bution is given by 

p(a”, b”) = 
{det[M(a, b)] -I}; 

2lr 
exp[ - :(m - l)TM-‘(a, b)(m - l)] (13a) 

where 

mT= [m(a), m(b)], (13b) 
and 

IT= [a, 61. (134 
m(a) and m(b) are the expected values of the random variables a and b. 
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There is a certain probability (Y that the given estimate of the a”, 6 pair of 
values will be found within the ellipse 

p(a”, 8) = P(a) (14) 

Its equation is determined by the relationship 

R*(a) = (m - l)TM-l( a, b)(m - 1) (15) 

where R*(a) has the cl&square distribution of n degrees of freedom. The 
covariance ellipse determines the area of the estimated error of the a”, 6 pair, 
in the same way as the confidence interval in the case of a one-dimensional 
random variable. 

GEOMETRICAL PROPERTIES OF THE COVARIANCE ELLIPSE 

The covariance ellipse matrix and the direction of the expected values 
determine explicitly the geometric properties of the covariance ellipse. 
Utilizing simple analytical geometric properties [7], the following may be 
stated. 

(1) Ellipses calculated for the different R*(a) values are alike and have 
the same centre of gravity (Fig. 1) 

I TO l/l 40 I = I m2O l/l 40 I = ewcf) 06) 

(2) The tangent 8 of the ellipse axes is determined by the equations 

tan(20) = -2cov(a, b)/[s*(b) -s*(a)] = T (17) 

tar@,,,) = -l/Tf (l/T2 + 1)1’2 (1% 

(3) The ellipse axes are perpendicular to each other 

tan( 0,) tan( 0,) = 1 (19) 

(4) The diameters of the axes in the 8, and e2 directions are given by 

%,*==w 

i 

[c0v2(a, b) -s*(a)s*(b)][l+ tan*(Oi,,)] 

i 

“* 

~cov(~, b) tan(B,,,) -s(a)’ tan*(O,,,) -3*(b) 

(20) 

(5) The ellipse is inscribed within a rectangle 

B, = 2R(a)s(a), B, = 2R(+(b) (21) 

(6) The ellipse area is proportional to R*(a) and to the square root of the 
covariance matrix determinant 

F= &(a)[s*(a)s*(b) - cov2(u, b)]l’* 

= mR*(a){det[M(a, b)]}“’ (22) 
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co. 
Fig. 1. Ellipses calculated for different R2( a) values. 

(7) Similar ellipses, of the same covariance matrix, may be described by 
the same correlation coefficient 

THE APPARENT LINEAR RELATIONSHIP BETWEEN THE LINEAR EQUATION 
COEFFICIENTS 

Because the covariance matrix of the linear equation coefficients is 
determined with an accuracy of the p factor, when the independent variable 
values are known, e.g. from experimental results, many of the ellipse 
properties mentioned above are known before the experiment and do not 
depend on the dependent variables yl, y,, . . . ,y,. 

Only the scale factor, the 1-1 value and subsequently the properties (5) and 
(6) remain unknown. The most relevant properties, such as the ellipse axes 



slope angle and the diameter ratio are known. These values may be calcu- 
lated from eqns. (18) and (22), using eqn. (9) + eqn. (11). 

Repeating the experiment results in a subsequent pair of estimation values 
2, 6 which should occur within the given covariance ellipse along a large 
ellipse axis. This phenomenon will be more obvious with greater experimen- 
tal error, i.e. large p values, as in this case the relatively narrow covariance 
ellipse will be inscribed within a relatively large rectangle and filled with 
points, characterizing the results of successive estimations. Where there are 
no lines fixing the rectangle sides, the image of the points will lie along the 
line 

i;=Cyd+P (25) 

The dimension of J3 is the same as the dimension of the dependent variable 
y; the dimension of 1y equals the reciprocal dimension of the independent X. 

The phenomenon of ordering of the results of successive estimations 
along such “compensation” lines will also occur when successive experi- 
ments are carried out with slightly different experimental conditions, i.e. 
using slightly different values of the independent variables xl,xz,. . . ,x,. The 
slope angle of the covariance ellipse is approximately equal to -2, which 
results from eqn. (18) by substituting from eqn. (10) and neglecting the l/n 
term in eqn. (10). Thus, it is sufficient that the mean arithmetic values of the 
independent variable x are close in repeated experiments. This phenomenon 
may lead to logical mistakes. 

If during the course of successive experiments a factor insignificant for 
the experiment, e.g. moon phases, changes, the occurrence of relationship 
(25) may be attributed to the as yet unrevealed comections between these 
facts, i.e. between the experiment and the state of the celestial body. 

Similarly, when the actual differences between two different experiments 
are small in comparison with the true experimental error, the linear rela- 
tionship (25) will be observed, though now there are “rational” cir- 
cumstances to explain this in the form of a simple linear equation. If in 
addition some ordering of the individual estimation results is observed, then 
eqn. (25) may subsequently be used to estimate the results of other experi- 
ments belonging to the same group. Disclosure of a strong statistical 
dependency, i.e. a high absolute value of the correlation coefficient r( a, b) 
for eqn. (25), only confirms these tendencies. 

Nevertheless, the value of this coefficient is determined by the experimen- 
tal conditions and can be calculated before the experiment from eqn. (23), 
using eqn. (9) + eqn. (II). The correlation coefficient r( a, b) values are 
usually large. 

The existence of the linear relationship (25) between a and b (see eqn. 
(1)) results from the application of the least-squares method to describe 
experimental results characterized by a normal distribution and is not a 
property of the objects tested. 
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As other methods for estimation of the linear equation (1) coefficients 
give values similar to those obtained by the least-squares method, then a 
similar relationship should be expected. The differences between the individ- 
ual estimates do not reflect the actual differences between the given experi- 
ments, but only the experimental error. Therefore, no physical significance 
should be attributed to a linear equation of the type of eqn. (25). The 
covariance ellipse inclined at arctan( -X) only determines the error in the 
estimation of a given set of [ a,b] parameters. 

The suggestion that the estimation error image of the straight line 
coefficients is an ellipse with axes perpendicular to the coordinates CI, b axes 
of diameter proportions to the standard deviation values s(a) and s(b), or 
may be a rectangle of sides proportional to these standard deviation values 
results from an incorrect generalization of the ideas connected with the 
application of the one-dimensional normal random variable in a multi-di- 
mensional case. 

However, it cannot be unequivocably decided whether a relationship of 
the eqn. (25) type is merely an image of an experimental error or a reflection 
of the true circumstances. 

The value of the direction coefficient calculated from eqn. (18) can, 
however, be compared with the value calculated for the given set of 
estimates a”, 6. 

On the one hand, it cannot be denied that the relations~p mentioned 
does exist and that the value of the direction coefficient of the true 
relationship is equal or close to the value calculated for the given covariance 
matrix. On the other hand, a distinct difference between the calculated value 
for the given covariance matrix and the experimental value may result from 
both the statistical spread and a large experimental error showing no 
random error features. It should be added that an estimation of the 
experimental error using the standard deviation for a single measurement 
merely defines the spread of experimental values around the mean, does not 
give the true value, and is usually rather optimistic as regards the quality of 
the measurements. 

CONCLUSIONS 

The considerations presented indicate the necessity of exercising great 
caution when a relationship between the coefficients of a linear equation of 
type (25) has been given. This caution should be greater still when the 
direction coefficient value of eqn. (25) is close to the calculated value based 
on the data from the covariance matrix. In such a case the experiment 
should be repeated preferably under different experimental conditions, or 
the result obtained must be compared with other literature data. Only then 
can it be stated whether or not the relations~p observed is of any signifi- 
cance. 
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