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ABSTRACT 

Three different equations have been used to study the temperature distribution in a plastic 
poly(methy1 methacrylate) bar. The governing equation for the steady state is found to 
depend on whether the heating is by conduction or radiation. Cooling from the steady state 
shows a single solution in most of the cases. 

INTRODUCTION 

The mechanism of heat transfer by conduction and radiation depends on 
the nature of the material. In solids, there is a clear distinction between 
metallic and non-metallic materials: in a metallic conductor heat is carried 
simultaneously by free (valence) electrons and by lattice waves (phonons), 
whereas in non-metallic materials (dielectrics) heat is carried only by pho- 
nons. 

In glassy (or amorphous) materials, the atoms or molecules are distributed 
in a manner lacking both symmetry and periodicity. The atomic arrange- 
ment shows short-range order but no long-range order (as in an ideal crystal 
or pure material), as X-ray diffraction experiments reveal [l]. Other solid 
materials such as plastics, leather, etc., are heterogeneous in composition, 
and in a broad sense they are mixtures of solid amorphous materials. 

With respect to radiative heat transfer, most solids absorb radiation very 
strongly through their surfaces, so that practically all the incident radiation 
is absorbed in a very thin layer below the surface. In metals, the thickness of 
this layer is a fraction of a micrometre. In electrically non-conducting 
materials, fractions of a millimetre are usually sufficient. Exceptions are a 
few solid substances like glass, quartz, rock salt, etc. [2]. When the radiation 
is absorbed within a certain wavelength range, there is heat production in 
the solid, and in some cases, such as plastics, the IR is so strongly absorbed 
that the material may melt. 
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Obviously, the flow of heat in opaque solids takes place exclusively by 
conduction, while in transparent solids conduction and radiation transfer 
can both occur. In either case, when there is a discontinuity in temperature 
between the solid and its surroundings, a non-uniform temperature distribu- 
tion is set up in the system which, together with its variation in time, is 
usually complex mathematical problem. 

In a previous paper [3] a study was made of the best governing equation 
for the linear flow or heat in a metallic bar. Three different equations were 
found that described the steady state within statistical error, and two 
equations that described the cooling. In this paper, a bar made of a 
transparent poor conductor (a plastic) is studied. Heating is by both 
conduction and radiation, to see what influence these two agents have on the 
governing equations for the temperature distribution in the steady state and 
during cooling. 

GENERAL THEORY 

The mathematical problem should be treated using the general theory of 
heat transfer [4] taking into account the nature, the geometry, and the way 
of heating the solid. 

The solid is a transparent plastic with a relatively low melting point. This 
means that, when the temperature distribution is set up, one cannot be sure 
about the homogeneity of the solid and the independence of thermophysical 
properties such as the density, p, the specific heat, c, and the thermal 
conductivity, K, on temperature and position. The plastic is in the form of a 
cylindrical rod with cross-section, w, diameter, d, and circumference, p, 

much smaller than its length, L, in order to consider the linear heat flow 
along a generatrix taken as the X-axis. If the rod is heated at one end by a 
heater, there is a heat flow from that end into the rest, with no heat 
production inside the solid, but if it is heated by electromagnetic waves, 
there should appear internal sources of heat A(x, t) at the points x where a 
wavelength is being absorbed by the plastic at time t. 

The differential equation of heat flow in the bar, which need not be 
homogeneous or isotropic, with heat sources and immersed in a medium of 
temperature 0,,, is given by 

afx 
z + & + Z(B - e,) =A(x, t) 

where f, is the heat flow and H is the surface conductance. This equation 
holds at any point of the solid, and corresponds to the equation of 
continuity, with sink and sources, in hydrodynamics. 

The treatment of eqn. (1) is very difficult, and one must find some 
approximation to solve it appropriately for particular cases. Some are briefly 
described below. 
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Homogeneous and isotropic solid 

If the solid is homogeneous and isotropic, the thermal conductivity is 
independent of temperature and the heat flow is given by 

f, = -Kg 
eqn. (1) then becomes 

where K = K/cp and v = Hp/cwp, K being the diffusivity. 

Heat production in the solid 

(2) 

In a first approximation, the rate of heat production is independent of the 
temperature, and to a better approximation often takes the form 

A=a+bB (4 

where a and b are constants which may have either sign [5]. This equation 
may be used as a very crude first approximation, but the exact solutions may 
have very different properties from those with linear behaviour. 

In some cases it has been found experimentally that an exponential law 
holds 

A = A, ebe (5) 

But analytical solutions do not always exist, and such cases have to be 
treated numerically. 

Isolated solid 

If the solid is isolated, there is no radiation into the medium, the surface 
conductance H is zero and therefore the third term on the left in eqn. (1) 
and in eqn. (3) is also zero. 

Steady state 

The case of steady flow, in which M/at = 0, is of particular importance 
when there is no radiation into the medium, as eqn. (3) becomes Poisson’s 
equation if A is constant, or Laplace’s equation if A = 0. 

Cooling 

In general, cooling from the steady state in a solid does not simplify any 
of the terms in eqn. (l), but, in the case studied here, when the radiative 
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heater is cut off the internal source of heat produced by the radiation should 
disappear. 

After this brief description of possibilities, the problem now is to select 
the appropriate solution of eqn. (1) from the experimental data obtained for 

the steady state and for cooling. 

EXPERIMENTAL PROCEDURE AND RESULTS 

The experimental procedure was qualitatively the same as that used for an 
iron bar [3]. The plastic selected was poly(methy1 methacrylate) (PMMA), 
which is well known in solar energy applications [5], and whose physical and 
geometrical characteristics are given in Table 1. To measure the temperature 
along the bar, taking into account the sharper temperature gradient than in 
the iron bar, 18 narrow holes were drilled perpendicular from the generatrix 
to the axis. Chromel-alumel thermocouples were inserted and connected to 
a digital thermometer. The first thermocouple, taken as the origin of 
coordinates, was placed 8 mm from the nearer end of the bar. The bar was 
heated from this end by a 250 W lamp and with a spectrum similar to that 
of the sun (‘solar lamp’) and very rich in IR radiation. In this way the bar 
was heated by both conduction and radiation. If only conduction was 
required, an aluminium film was placed on the end, over the cross-section of 
the bar. The light was collimated by a screen with a hole of the same 
diameter as the cross-section. The intensity of the radiation was adjusted by 
altering the distance between lamp and bar. The bar was held on two 
wooden supports and isolated by means of asbestos cord. The room temper- 
ature was taken by a thermocouple inserted from the generatrix to the centre 
of a cylindrical copper block (5 cm high and 9 cm in diameter). 

Optical study of the bar 

Before starting to study the temperature distribution in the bar, it was 
interesting to investigate its optical behaviour. Thus, the study began with 
the spectral absorption of the radiation. 

TABLE 1 

Physical and geometrical characteristics of the PMMA bar 

p = (1.190f0.001)X103 kgmm3 at 20°C 
c = (1.42~0.01)x103 J kg-l K-’ 
K = (0.193 f 0.001) J s-l m-l K-’ (O-50 o C) 
n ,, = (1.492 + 0.001) (X = 589 x 10F9 m) 
L = (135.5 +0.1)X lop2 m 
d=(500.0f0.5)~10-~ m 
p = (157.08 kO.05) x 10F3 m 
w = (196.35 kO.01) x lop5 m2 
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Fig. 1. Transmission of PMMA as a function of wavelength for a sample of thickness 0.38 
mm. 

The spectrum obtained from the spectrophotometer with a sample of 0.38 
mm thickness shows that the UV radiation is absorbed completely, as 
expected. IR radiation is partially absorbed, as can be seen from Fig. 1, 
where the wavenumber (in cm-‘) at the bottom, or wavelength (in pm) at 
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Fig. 2. Absorption for a sample of PMMA and KBr as a function of wavelength. 
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the top, is plotted against percentage transmission. The transmission is 
defined as the ratio between the transmitted and the incident intensities. The 
maximum peak is located at = 2.7 pm with = 70% transmission, whereas 
the second and third peaks have the same value of about 50% at X = 4 and 
14 pm, respectively. With a sample of thickness 1 mm, the maximum peak 
exhibited = 30% transmission. 

To obtain the minimum transmission, one needs to make a film with 
plastic filings and KBr as a ‘glue’, as KBr is transparent to IR radiation. The 
results are shown in Fig. 2, where there are two minima at X = 5.8 and 8.7 
pm, with = 30% transmission, and three secondary minima, at X = 3.4, 6.9 
and 8.0 pm, with = 40% transmission. In this figure, the transmission 
maxima have disappeared because the distribution of filings in the sample is 
random, but this affects neither the location nor the intensity of the minima. 

Steady state 

Table 2 gives the three different steady states (I-III) chosen, the way in 
which the bar was heated, the distances between the lamp and the end of the 
bar, and the time before the cooling commenced. In all cases the steady state 
was reached 4-5 h from the start of heating. The temperature distributions 
for these cases are given in Table 3, where the first column gives the 
distances x between thermocouples. Cases I and II were obtained by 
radiation, having the smoothest and the sharpest temperature gradients, 
respectively, whereas case III is an intermediate one obtained by heating 
with the aluminium film placed on the end of the bar. 

As a first selection amongst all the possible solutions of eqn. (l), the 
power, single exponential, and double exponential were chosen for these 
cases: 

e = a,x -b, (6) 

e = a, epblx (7) 

0 = a, eeblx + a, eebzx (8) 

where a,, b,, a2 and b, are constants to be determined from the experimen- 
tal values given in Table 3. 

TABLE 2 

Initial conditions used to obtain the three steady states I-III 

Steady Heating Source-bar 

state source distance (cm) 

I light + heat 20 
II light + heat 10 
III heat 10 

Time 

(h) 

16 
5.5 
6 
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TABLE 3 

Temperature distributions corresponding to the three steady states I-III 

XX10m3 m I II III XX10F3 m I II II 

0 24.0 71.0 52.0 83 2.6 1.3 2.2 

15 12.9 40.0 28.6 91 2.3 6.5 1.7 
25 9.1 30.4 20.1 100 2.1 5.9 1.4 
33 6.8 22.4 13.8 125 1.8 4.6 0.9 
41 5.4 18.1 9.9 150 1.6 4.0 0.6 
50 4.5 14.6 7.3 175 1.4 3.4 0.5 
58 3.7 11.9 5.3 200 1.2 3.2 0.4 
66 3.1 10.0 3.9 250 1.0 2.5 0.4 
75 2.8 8.4 2.9 500 0.5 1.2 0.0 

TABLE 4 

Values of the fit corresponding to the first steady state I 

I -b,&o a2ka -b,ko &-Qo2 
t=l 

Eqn. (6) 0.28 k 0.01 0.923 f 0.001 - _ 1.23 
Eon. (71 22.9 kO.7 33.14 +0.07 - 18.09 
Eqn. (8) 20.9 kO.9 48.47 + 0.08 3.11+ 0.08 4.46 & 0.07 0.11 

TABLE 5 

Values of the fit corresponding to the second steady state II 

II n, f 0 -b,+u a2 t- u -b,+u 
i=l 

Eqn. (6) 0.82 + 0.01 0.941* 0.001 - - 40.84 
Ew (7) 68.4 kO.7 30.86 +0.07 - - 92.89 
Eon. (81 62.9 +0.8 41.26 kO.08 7.79 + 0.08 4.54 + 0.07 3.02 

TABLE 6 

Values of the fit corresponding to the third steady state III 

III a, k (7 -b,ku a, + u -b,+u 
i=l 

Eq. (6) 0.168 + 0.004 1.2404 + 0.0004 - _ 40.23 
Eq. (71 51.9 f0.8 39.28 kO.08 - _ 2.11 
Eq. (8) 51.6 f0.8 40.39 & 0.08 0.51+ 0.08 1.99 + 0.07 1.07 
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Tables 4-6 list the results for these constants and their standard deviation 
u for the steady states I-III. The last column shows the sum of the squares 
of the differences between the experimental value 0, and the expected value 
4 as a measure of the goodness of the fit [7]. From Tables 4-6, the best 
equation for the steady states in the plastic bar is seen to be the double 
exponential with a first (second) exponential driving the sharper (smoother) 
temperature gradient; the second exponential is much smaller and could be 
considered as a correction to the first. The accuracy of the fit is better when 
the temperature is lower, and for case I, the fit is practically perfect. 

The other two fits are affected by the manner of heating. The power 
equation yields a value of b, very close to unity, being below 1 for cases I 
and II and above 1 for case III. The differences between the experimental 
data an theoretical values are close to those of the double exponential in 
case I, but higher for the other two cases, each giving a value of = 40. The 
single exponential equation tends to give a value of a, which is 8,, the 
temperature at the first point of the bar. For cases I and II these values of a, 
are lower than 8,, but for case III it is exactly the same in consequence of 
the marked decrease in the uncertainty shown in the last column. 

Cooling 

Once the steady state had been reached cooling was started by switching 
off the lamp and removing it from the vicinity of the end of the bar (because 
of its thermal inertia). The first temperatures were taken after 30 s and the 
other measurements were done every 5 min up to 190 min, when the 
temperatures in the bar were seen to be near room temperature. 

Case III, with temperature intermediate between that for cases I and II, 
was chosen for cooling, and the exponential decay was studied after discard- 
ing other kinds of solutions with far from reasonable behaviour. Tables 7 
and 8 show the results of the fit for the simple and double exponential, 
respectively, where 8,, t$, t&. . . , di are the temperatures at the points 
x = 0.0, 15, 25 ,..., xi (see Table 3). The cooling obeys the general form for 
the single exponential, as the double exponential has the same coefficient for 

TABLE 7 

Fit for the cooling starting from steady state III, using eqn. (7) 

Cool. a1 * 0 

4 52.2 f 0.8 
0, 32.2kO.7 
8, 23.9kO.7 
8, 17.1& 0.8 

-b,*U &8,-8,)2 
i=l 

0.57 + 0.01 13.24 
0.36 + 0.01 31.52 
0.31 f 0.01 31.60 
0.26 f 0.02 25.13 
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TABLE 8 

Fit for the cooling starting from steady state III, using eqn. (8) 

Cool. a, zk 0 -b,+a a2*o -b,+o 

01 31.6 k1.2 0.81 f0.06 21.83 f0.03 0.39 + 0.02 
02 20.7 &-LO 0.36 + 0.03 11.45 f 0.01 0.360 f 0.009 
@, 12.5 *1.1 0.31 f 0.04 11.38kO.01 0.308 + 0.009 
8, 11.04+0.03 0.26 k 0.01 6.0 +0.3 0.26 +0.02 

i=l 

4.08 
31.52 
31.60 
25.13 

the exponent (b, = b2) and the total coefficient a is the sum of a, and a2_ 
Only for the first point does the double exponential clearly predominate 
over the single exponential, but the differences between the experimental 
and expected values are not large for either case. For points beyond i = 4 
the temperature excess over room temperature is not so large and the curve 
tend to straight lines. 

Figure 3 presents the cooling for the first ten points in the bar. The first 
point presents the sharpest decay, the temperature after 25, 40, 55,. . . min 
being lower than for the points i = 2, 3, 4,. . . From the second point on, the 
thermal inertia is evident and increases as the temperature difference be- 
tween the points and the laboratory diminishes. 

U 50 100 150 t x 60 s 

Fig. 3. Cooling curves for several points in the PMMA bar, with the cooling started from 
steady state III. 
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DISCUSSION AND CONCLUSIONS 

As can be seen from the results, three different equations explain the 
steady state temperature distribution in the bar, but one equation pre- 
dominates depending on which agency produces the heating. If the bar is 
heated by the lamp, with thermal and radiative effects, the power solution of 
eqn. (6) is better than the single exponential solution of eqn. (7), but when 
heating is without radiation the opposite is the case. The explanation could 
be in the nature of the bar (Table 1) and in the role of the internal source of 
heat in the plastic (Figs. 1 and 2). The power law for the steady state is one 
of the limited number of special analytical solutions for the differential 
equation of linear flow, eqn. (l), when the thermal properties of a solid varx’ 
with position. The internal sources of heat created in the transparent 
medium as the radiation passes along the bar make the bar less homoge- 
neous, and the power solution predominates over the single exponential 
solution (Tables 4 and 5). When radiation is prevented, the internal sources 
disappear (A = 0), lessening the inhomogeneity of the bar and permitting 
eqn. (3) to be used instead of eqn. (1). The resulting differential equation has 
a straightforward solution, a single exponential as in eqn. (7) with coefficient 
a, = 8,, which agrees with the results given in Table 6. The double exponen- 
tial, which is a general solution of eqn. (l), gives the best fit to the steady 
state as the number of parameters available to fit the data is double (a,, b,, 
a2 and b2). The first exponential describes the sharpest decay of the 
temperature distribution, whereas the second describes the smoother decay 
of temperature (Tables 4-6). In some practical cases it is easier to handle a 
single exponential than a double exponential when a, B a2 and b, B b,, as 
in the case under consideration, despite the slight loss of accuracy in the 
results. 

The general behaviour for the cooling is a single exponential law, except 
for the first point in the bar where the double exponential is clearly seen 
(Fig. 3). The faster temperature decay at this point is a consequence of the 
closeness of the end of the bar (only 8 mm), permitting heat loss through its 
cross-section. Apart from this case, the double exponential solutions ob- 
tained reduce to single exponentials, as the exponents are the same (b, = b,) 
and the resulting coefficient a is the sum of each coefficient a, and a2 
(Tables 7 and 8). 
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