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ABSTRACT 

The following relationship has been derived between the temperature T and constant 
heating rate for a constant value of the degree of conversion 

l/T=a+blnj3 (a = const., b = const .) 

The validity of the same relationship for non-classical non-isothermal kinetics is also 
discussed. Some potential applications of the relationship are suggested. 

INTRODUCTION 

The basic equation of classical non-isothermal kinetics [l-4] 

da/dT = (A/P)f( LX) e-(E/RT) (1) 
with 

A = const. (2) 
E = const. (3) 

f(a) = (1 - CI)~CY~ [ -ln(l - a)] ’ (4) 
where n, m and p are constants, is obtained by performing the classical 
non-isothermal change (CNC) with 

T= To+& (5) 

on the isothermal kinetic equation 

dar/dt = Af( a) e-(E’RT) (6) 
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accepted as the postulated primary isothermal differential kinetic equation 
(P-PIDKE) [2-41. 

From eqn. (l), by variable separation and integration, we obtain 

lada/f( cr) = ( A//?)ir e-(E/RT) dT 

with j3 considered as being rigorously constant. 

DERIVATION OF THE RELATIONSHIP BETWEEN TEMPERATURE AND HEAT- 
ING RATE FOR a = const. 

In order to perform such a derivation we need to consider some of our 
earlier ideas concerning constant heating rate as a variable in non-isothermal 
kinetics [5-71. 

Introducing the notation 

into relationship (7) and taking its derivative with respect to p for (Y = const., 
we obtain 

Z/A = e-[E/RT(P)l [dT( p)/dp] (9) 

where T( /3) means that for (Y = const., the corresponding temperature 

depends on the heating rate. The left-hand side of eqn. (8) can be rewritten 
to take relationship (7) into account. Equation (8) then becomes 

A/pjurCp) e -(E/Rr) dT= e- [E’RT(P)l [dT( /?)/d/S] (IO) 

Introducing into eqn. (9) the approximation [8] 

eC(E’RT) dT = ( RT2/E) Q( T, E) e-(E/RT) (11) 

where Q( T, E) is a function with smooth variation whose value is close to 
unity (in a first approximation, Q(T, E) can be considered as constant), we 
obtain 

(~/P)[RT~(/~)/E] e-[E’RT(P)1Q(T(/3), E) = e-IE’RT(P)l[dT(P)/dP] 

(12) 

or 

[RQ(T(P), E)/E]bWP) = dT(P)/T2(P) 03) 
The relationship we are seeking is obtained from eqn. (13) through integra- 
tion, considering Q( T( /3), E) = const. in the form 

l/T(P) = a - [RQ(T,, WE] ln P 04) 
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where T1 is an average temperature and the integration constant a is given 

bY 

a = l,/T(jI = 1) (1% 

It is interesting to compare relationship (14) with a number of other 
simple relationships, derived by Ozawa [9] and Flynn and Wall [lo]. 

Ozawa’s relationship for ff = const. is 

-log /3 - 0.4567[ E/RT( /I)] = const. (16) 

After rearrangement, this leads to 

l/T(P) = a, - (R/E)0.9509 In p (a* = const .) (17) 

It is easy to see that relationship (17) is a particular case of relationship (14). 
The Flynn-Wall relationship 

log F(a) = log( AE/‘R) - log p - 2.315 - 0.457[E/RT( P)f (18) 

can be rearranged into the form 

l/T(P) = a2 - (R/E)0.9503 In /3 ( a2 = const.) 

which is practically identical to relationship (17). 

(19) 

Introducing the notation 

b= -RQ(T;, E)/E (20) 

into relationship (14) we obtain 

l/T(P)=a+6lnP ( a = const ., b = const .) (21) 

For non-classical non-isotherm kinetics (with kinetic parameters depend- 
ing on the degree of conversion), eqn. (1) takes the form [ll] 

da/dT = [A ( c.Y)/~] f*( CX) e-tE(u)/RT1 (22) 

with n(a), m(a) and ~(a) as in f*(a). For (Y = const., dLu/dT and T 
depend on the heating rate, and can therefore be written as (d~/dT)(~) 
and T(p). From eqn. (22), taking the logarithms, we obtain 

ln P + ln[(dVdT)(P)] = ln A(a)f*(a) - [%+‘RT(P)] (23) 

Experience has shown that (da/dT)(p) changes smoothly with p and 
l/T(p). We can therefore consider 

ln~(d~/dT~(~)~ = c + d In /3 

where c and d are constants. 

(24) 

Taking into account relationship (24) and the fact that for a given ar, 
A(a), f*(a) and E(a) are constants, we obtain 

l/T(~)=ln~(~)~*~~)-c-[~/~(ff)](l~d)ln~ (25) 

Thus in non-classical non-isothermal kinetics, a relationship of the form 

l/T(P) = ax + b” In p (a = const., b = const.) (26) 
is also valid. 
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Taking into account the fact that in relationships (21) and (26) a 2 b, the 
temperature T( /3), given by 

T(P) = I/41 + (b/4 ln PI (27) 
can be developed in series, Keeping only two terms from such a develop- 
ment, we obtain 

T(P) = (l/a) - (b/a*) In p = a, + b, In /3 (a, = const., b, = const.) 

(28) 

The same relationship has been derived in a different way in a previous 
work [7]. 

CHECKING RELATIONSHIPS (21) AND (26) 

Let us suppose that for the general case of a non-isothermal process at 
(Y = const., the temperatures T,, T2,. . . , T, for the heating rates &, p2,. . . , &, 

are known (experimental or modelled data). Let us also suppose that the 
process under investigation does not change its mechanism within the range 
of variables considered. To determine the constants u and b we suggest the 
least-squares method. In such a case, the sum S given by 

S= 2 [u+b In &-(l/7;)]* (29 
i=l 

should be minimized, i.e. 

as/au = 0 

and 

(30) 

S/i3b = 0 (31) 

After performing the detailed calculations, we obtain 

an + b i In & = f: l/T (32) 
i=l i=l 

a i In & + b 2 In*& = i (l/q) In pi (33) 
i=l i=l I=1 

the constants a and b being the solutions of the system comprised by eqns. 
(32) and (33). Using these values, and eqn. (21), the temperatures 

LdPlh TcadP*>~~~~ 9 Tcalc( j3,) may be calculated and subsequently com- 
pared with T,, T,, . . . , Tn. 

In Tables 1-3, the results of such a comparison are given for the 
dehydration of calcium oxalate monohydrate [12] at three values of the 
degree of conversion. 
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TABLE 1 

Comparison between T and 7&(@;) for calcium oxalate dehydration at a = 0.10 a 

No. & (K min-‘) r, (K) T,,t,(Pi) (K) T, - T,,,,(R) (K) 

1 0.987 412.2 412.86 - 0.66 
2 2.353 420.9 419.63 1.27 
3 4.988 425.3 425.66 - 0.36 
4 9.573 430.8 431.04 -0.24 

a n = 2.42155 1O-3 K-l; b = -4.49790 lo-’ K-‘. 

TABLE 2 

Comparison between T. and T&( p,) for calcium oxalate dehydration at a: = 0.50 a 

No. j3, (K mm’) T, (K) Tca,c(P,) (K) T, - Tca,c(P,) (K) 

1 0.987 429.2 429.64 - 0.44 
2 2.353 441.0 440.10 0.90 
3 4.988 449.2 449.56 - 0.36 
4 9.573 458.0 458.11 -0.11 

a a = 2.32672 lO-3 K-‘; b = -6.36679 lO-5 K-’ 

TABLE 3 

Comparison between T, and T,,,,( p,) for calcium oxalate dehydration at (Y = 0.90 a 

No. p, (K mm’) T, (K) Tca,c(P,) (K) T, - T,,,,(&)(K) 

1 0.987 439.0 439.25 - 0.25 
2 2.353 452.9 452.60 0.30 
3 4.988 465.1 464.81 0.29 
4 9.573 475.6 475.95 -0.35 

a a = 2.27559 1O-3 K-r; b = -7.72559 1O-5 K-‘. 

Let us now consider three non-isothermal curves modelled by computer 
for the following variable kinetic parameters [ll] 

E(a) = 40000 - 2oooocy (cal mol-‘) (34) 

f(a) = (1 - cX)*.5-a (35) 

/q(y) = 1()W-W 
(s-7 (36) 

The results of a similar comtiarison are given in Tables 4-6. Examination of 
the results given in Tables l-6 indicates a very good agreement between the 
calculated and experimental temperature values. 
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TABLE 4 

Comparison between 7’, and Tcalc (/3,) for OL = 0.10 a 

No. p, (K min-‘) T, (K) TEaIc(Pi) (K) T, - Tca,c(Pi) (K) 
1 2 474.125 474.128 - 0.003 

2 6 486.475 486.468 0.007 
3 12 494.586 494.590 - 0.004 

a a = 2.14289 1O-3 K-‘; b = -4.87015 1O-5 K-‘. 

TABLE 5 

Comparison between T, and calc( /3,) for a = 0.50 a 

No. /3, (K min-‘) T, (K) Z&Pi) (K) 

1 2 504.440 504.436 
2 6 520.648 520.658 
3 12 531.448 531.441 

a a = 2.02138 1O-3 K-‘; b = -5.62219 lo-’ K-‘. 

T, - Tca,c ( P, ) (K) 

0.004 
- 0.010 

0.007 

TABLE 6 

Comparison between q and c,,,(&) for a = 0.90 a 

No. p, (K min-‘) I; (K) Tca,c(P,) (K) T, - T,,,,(Pi) (K) 

1 2 537.414 537.394 0.020 
2 6 561.097 561.154 - 0.057 
3 12 577.293 577.256 0.037 

a a zl.91054 lO-3 K-‘; b = -7.17171 1O-5 K-‘. 

POSSIBLE APPLICATIONS OF RELATIONSHIPS (21) AND (26) 

Evaluation of a T, corresponding to an uninvestigated &, 

According to relationship (21) or (26), we have 

T, = l/a + b In ph 

OI- 

T, = l/a* + b* In & 

Assessment of changes of mechanism 

(37) 

(39 

If, for one or several heating rates at the boundary of the range under 
consideration, (e.g. & and &) the calculated temperatures for a = const. 
differ appreciably from the experimental values, it may be concluded that 



41 

for the heating rates used, the mechanism of the process under investigation 
undergoes a change. 

CONCLUSIONS 

Relationships have been derived between temperature and constant heat- 
ing rate at (Y = const. for both classical and non-classical non-isothermal 
kinetic systems. 
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