ON A RELATIONSHIP BETWEEN TEMPERATURE AND CONSTANT HEATING RATE FOR A CONSTANT DEGREE OF CONVERSION IN NON-ISOTHERMAL KINETICS

E. URBANOVICI

Research Institute for Electrotechnics (ICPE), Sfîntu Gheorghe Branch, Sfîntu Gheorghe 4000, Str. Jozsef Attila 4, Jud. Covasna (Romania)

E. SEGAL

Department of Physical Chemistry and Electrochemical Technology, Faculty of Chemical Technology, Polytechnic Institute of Bucharest, Bulevardul Republicii 13, Bucharest (Romania)

(Received 5 May 1989)

ABSTRACT

The following relationship has been derived between the temperature T and constant heating rate for a constant value of the degree of conversion

 $1/T = a + b \ln \beta$ (a = const., b = const.)

The validity of the same relationship for non-classical non-isothermal kinetics is also discussed. Some potential applications of the relationship are suggested.

INTRODUCTION

The basic equation of classical non-isothermal kinetics [1-4]

$$d\alpha/dT = (A/\beta)f(\alpha) e^{-(E/RT)}$$
(1)

with

$$A = \text{const.} \tag{2}$$

$$E = \text{const.}$$

$$f(\alpha) = (1 - \alpha)^n \alpha^m \left[-\ln(1 - \alpha) \right]^p \tag{4}$$

where n, m and p are constants, is obtained by performing the classical non-isothermal change (CNC) with

$$T = T_0 + \beta t \tag{5}$$

on the isothermal kinetic equation

$$d\alpha/dt = Af(\alpha) e^{-(E/RT)}$$
(6)

(3)

accepted as the postulated primary isothermal differential kinetic equation (P-PIDKE) [2-4].

From eqn. (1), by variable separation and integration, we obtain

$$\int_0^{\alpha} \mathrm{d}\alpha / f(\alpha) = (A/\beta) \int_0^T e^{-(E/RT)} \,\mathrm{d}T \tag{7}$$

with β considered as being rigorously constant.

DERIVATION OF THE RELATIONSHIP BETWEEN TEMPERATURE AND HEAT-ING RATE FOR $\alpha = \text{const.}$

In order to perform such a derivation we need to consider some of our earlier ideas concerning constant heating rate as a variable in non-isothermal kinetics [5-7].

Introducing the notation

$$Z = \int_0^{\alpha} \mathrm{d}\alpha / f(\alpha) \tag{8}$$

into relationship (7) and taking its derivative with respect to β for $\alpha = \text{const.}$, we obtain

$$Z/A = e^{-[E/RT(\beta)]} [dT(\beta)/d\beta]$$
(9)

where $T(\beta)$ means that for $\alpha = \text{const.}$, the corresponding temperature depends on the heating rate. The left-hand side of eqn. (8) can be rewritten to take relationship (7) into account. Equation (8) then becomes

$$A/\beta \int_0^{T(\beta)} e^{-(E/RT)} dT = e^{-[E/RT(\beta)]} [dT(\beta)/d\beta]$$
(10)

Introducing into eqn. (9) the approximation [8]

$$e^{-(E/RT)} dT = (RT^2/E)Q(T, E) e^{-(E/RT)}$$
(11)

where Q(T, E) is a function with smooth variation whose value is close to unity (in a first approximation, Q(T, E) can be considered as constant), we obtain

$$(1/\beta) \left[RT^{2}(\beta)/E \right] e^{-\left[E/RT(\beta) \right]} Q(T(\beta), E) = e^{-\left[E/RT(\beta) \right]} \left[dT(\beta)/d\beta \right]$$
(12)

or

$$[RQ(T(\beta), E)/E](d\beta/\beta) = dT(\beta)/T^{2}(\beta)$$
(13)

The relationship we are seeking is obtained from eqn. (13) through integration, considering $Q(T(\beta), E) \approx \text{const.}$ in the form

$$1/T(\beta) = a - [RQ(T_1, E)/E] \ln \beta$$
(14)

where T_1 is an average temperature and the integration constant a is given by

$$a = 1/T(\beta = 1) \tag{15}$$

It is interesting to compare relationship (14) with a number of other simple relationships, derived by Ozawa [9] and Flynn and Wall [10].

Ozawa's relationship for $\alpha = \text{const.}$ is

$$-\log\beta - 0.4567[E/RT(\beta)] = \text{const.}$$
(16)

After rearrangement, this leads to

$$1/T(\beta) = a_1 - (R/E)0.9509 \ln \beta$$
 (a₁ = const.) (17)

It is easy to see that relationship (17) is a particular case of relationship (14). The Flynn-Wall relationship

$$\log F(\alpha) = \log(AE/R) - \log \beta - 2.315 - 0.457[E/RT(\beta)]$$
(18)

can be rearranged into the form

$$1/T(\beta) = a_2 - (R/E)0.9503 \ln \beta$$
 (a₂ = const.) (19)

which is practically identical to relationship (17).

Introducing the notation

$$b = -RQ(T_1, E)/E \tag{20}$$

into relationship (14), we obtain

$$1/T(\beta) = a + b \ln \beta \qquad (a = \text{const.}, b = \text{const.})$$
(21)

For non-classical non-isothermal kinetics (with kinetic parameters depending on the degree of conversion), eqn. (1) takes the form [11]

$$d\alpha/dT = \left[A(\alpha)/\beta\right] f^{\star}(\alpha) e^{-[E(\alpha)/RT]}$$
(22)

with $n(\alpha)$, $m(\alpha)$ and $p(\alpha)$ as in $f^{\star}(\alpha)$. For $\alpha = \text{const.}$, $d\alpha/dT$ and T depend on the heating rate, and can therefore be written as $(d\alpha/dT)(\beta)$ and $T(\beta)$. From eqn. (22), taking the logarithms, we obtain

$$\ln \beta + \ln[(d\alpha/dT)(\beta)] = \ln A(\alpha)f^{\star}(\alpha) - [E(\alpha)/RT(\beta)]$$
(23)

Experience has shown that $(d\alpha/dT)(\beta)$ changes smoothly with β and $1/T(\beta)$. We can therefore consider

$$\ln[(d\alpha/dT)(\beta)] \simeq c + d \ln \beta$$
(24)

where c and d are constants.

Taking into account relationship (24) and the fact that for a given α , $A(\alpha)$, $f^*(\alpha)$ and $E(\alpha)$ are constants, we obtain

$$1/T(\beta) = \ln A(\alpha) f^{\star}(\alpha) - c - [R/E(\alpha)](1+d) \ln \beta$$
(25)

Thus in non-classical non-isothermal kinetics, a relationship of the form $1/T(\beta) = a^x + b^x \ln \beta$ (a = const., b = const.) (26) is also valid. Taking into account the fact that in relationships (21) and (26) $a \ge b$, the temperature $T(\beta)$, given by

$$T(\beta) = 1/a [1 + (b/a) \ln \beta]$$
(27)

can be developed in series. Keeping only two terms from such a development, we obtain

$$T(\beta) = (1/a) - (b/a^2) \ln \beta = a_1 + b_1 \ln \beta \qquad (a_1 = \text{const.}, \ b_1 = \text{const.})$$
(28)

The same relationship has been derived in a different way in a previous work [7].

CHECKING RELATIONSHIPS (21) AND (26)

Let us suppose that for the general case of a non-isothermal process at $\alpha = \text{const.}$, the temperatures T_1, T_2, \ldots, T_n for the heating rates $\beta_1, \beta_2, \ldots, \beta_n$ are known (experimental or modelled data). Let us also suppose that the process under investigation does not change its mechanism within the range of variables considered. To determine the constants a and b we suggest the least-squares method. In such a case, the sum S given by

$$S = \sum_{i=1}^{n} \left[a + b \ln \beta_i - (1/T_i) \right]^2$$
(29)

should be minimized, i.e.

$$\partial S / \partial a = 0 \tag{30}$$

and

 $\partial S / \partial b = 0 \tag{31}$

After performing the detailed calculations, we obtain

$$an + b \sum_{i=1}^{n} \ln \beta_i = \sum_{i=1}^{n} 1/T_i$$
(32)

$$a\sum_{i=1}^{n} \ln \beta_{i} + b\sum_{i=1}^{n} \ln^{2}\beta_{i} = \sum_{i=1}^{n} (1/T_{i}) \ln \beta_{i}$$
(33)

the constants a and b being the solutions of the system comprised by eqns. (32) and (33). Using these values, and eqn. (21), the temperatures $T_{calc}(\beta_1), T_{calc}(\beta_2), \ldots, T_{calc}(\beta_n)$ may be calculated and subsequently compared with T_1, T_2, \ldots, T_n .

In Tables 1-3, the results of such a comparison are given for the dehydration of calcium oxalate monohydrate [12] at three values of the degree of conversion.

TABLE 1

Comparison between T_i and $T_{calc}(\beta_i)$ for calcium oxalate dehydration at $\alpha = 0.10^{a}$

No.	β_i (K min ⁻¹)	$T_i(\mathbf{K})$	$T_{\text{calc}}(\boldsymbol{\beta}_i)(\mathbf{K})$	$T_i - T_{\text{calc}}(\boldsymbol{\beta}_i) (\mathbf{K})$
1	0.987	412.2	412.86	-0.66
2	2.353	420.9	419.63	1.27
3	4.988	425.3	425.66	-0.36
4	9.573	430.8	431.04	-0.24

TABLE 2

Comparison between T_i and $T_{calc}(\beta_i)$ for calcium oxalate dehydration at $\alpha = 0.50^{a}$

No.	β_i (K min ⁻¹)	T_i (K)	$T_{\text{calc}}(\boldsymbol{\beta}_i)(\mathbf{K})$	$\overline{T_i - T_{\text{calc}}(\beta_i)(\mathbf{K})}$
1	0.987	429.2	429.64	-0.44
2	2.353	441.0	440.10	0.90
3	4.988	449.2	449.56	-0.36
4	9.573	458.0	458.11	-0.11

TABLE 3

Comparison between T_i and $T_{calc}(\beta_i)$ for calcium oxalate dehydration at $\alpha = 0.90^{a}$

No.	$\overline{\beta}_i$ (K min ⁻¹)	\overline{T}_i (K)	$T_{\text{calc}}(\boldsymbol{\beta}_i)(\mathbf{K})$	$\overline{T_i} - \overline{T_{\text{calc}}}(\beta_i) (\mathbf{K})$
1	0.987	439.0	439.25	-0.25
2	2.353	452.9	452.60	0.30
3	4.988	465.1	464.81	0.29
4	9.573	475.6	475.95	-0.35

Let us now consider three non-isothermal curves modelled by computer for the following variable kinetic parameters [11]

$$E(\alpha) = 40\,000 - 20\,000\,\alpha \qquad (\text{cal mol}^{-1}) \tag{34}$$

$$f(\alpha) = (1 - \alpha)^{1.5 - \alpha} \tag{35}$$

$$A(\alpha) = 10^{(15-10\alpha)} \qquad (s^{-1}) \tag{36}$$

The results of a similar comparison are given in Tables 4-6. Examination of the results given in Tables 1-6 indicates a very good agreement between the calculated and experimental temperature values.

No.	β_i (K min ⁻¹)	$T_i(\mathbf{K})$	$T_{\text{calc}}(\beta_i)(\mathbf{K})$	$T_i - T_{\text{calc}}(\boldsymbol{\beta}_i) (\mathbf{K})$
1	2	474.125	474.128	-0.003
2	6	486.475	486.468	0.007
3	12	494.586	494.590	-0.004

Comparison between T_i and T_{calc} (β_i) for $\alpha = 0.10^{a}$

^a $a = 2.14289 \ 10^{-3} \ \mathrm{K}^{-1}$; $b = -4.87015 \ 10^{-5} \ \mathrm{K}^{-1}$.

TABLE 5

Comparison between T_i and $T_{calc}(\beta_i)$ for $\alpha = 0.50^{a}$

No.	β_i (K min ⁻¹)	$T_i(\mathbf{K})$	$T_{\text{calc}}(\boldsymbol{\beta}_i)(\mathbf{K})$	$T_i - T_{\text{calc}}(\boldsymbol{\beta}_i) (\mathbf{K})$
1	2	504.440	504.436	0.004
2	6	520.648	520.658	-0.010
3	12	531,448	531.441	0.007

TABLE 6

Comparison between T_i and $T_{calc}(\beta_i)$ for $\alpha = 0.90^{a}$

No.	$\beta_i (\mathrm{K} \mathrm{min}^{-1})$	$T_i(\mathbf{K})$	$T_{\text{calc}}(\boldsymbol{\beta}_i)(\mathbf{K})$	$T_i - T_{\text{calc}}(\boldsymbol{\beta}_i) (\mathbf{K})$	
1	2	537.414	537.394	0.020	
2	6	561.097	561.154	-0.057	
3	12	577.293	577.256	0.037	
		-			

^a $a = 1.91054 \ 10^{-3} \ \mathrm{K}^{-1}$; $b = -7.17171 \ 10^{-5} \ \mathrm{K}^{-1}$.

POSSIBLE APPLICATIONS OF RELATIONSHIPS (21) AND (26)

Evaluation of a T_{λ} corresponding to an uninvestigated β_{λ}

According to relationship (21) or (26), we have

$$T_{\lambda} = 1/a + b \ln \beta_{\lambda} \tag{37}$$

(38)

or

 $T_{\lambda} = 1/a^{\star} + b^{\star} \ln \beta_{\lambda}$

Assessment of changes of mechanism

If, for one or several heating rates at the boundary of the range under consideration, (e.g. β_1 and β_n) the calculated temperatures for $\alpha = \text{const.}$ differ appreciably from the experimental values, it may be concluded that

for the heating rates used, the mechanism of the process under investigation undergoes a change.

CONCLUSIONS

Relationships have been derived between temperature and constant heating rate at $\alpha = \text{const.}$ for both classical and non-classical non-isothermal kinetic systems.

REFERENCES

- 1 E. Urbanovici and E. Segal, Thermochim. Acta, 111 (1987) 335.
- 2 E. Urbanovici and E. Segal, Thermochim. Acta, 118 (1987) 65.
- 3 E. Urbanovici and E. Segal, Thermochim. Acta, 125 (1988) 261.
- 4 E. Urbanovici and E. Segal, J. Therm. Anal., 33 (1988) 265.
- 5 E. Urbanovici and E. Segal, Thermochim. Acta, 95 (1985) 273.
- 6 E. Urbanovici and E. Segal, Thermochim. Acta, 107 (1986) 353.
- 7 E. Urbanovici and E. Segal, Thermochim. Acta, in press.
- 8 J. Šesták, V.V. Šatava and W.W. Wendlandt, Thermochim. Acta, 7 (1973).
- 9 T. Ozawa, Bull. Chem. Soc., Japan, 38 (1965) 1881.
- 10 J.H. Flynn and L.A. Wall, Polym. Lett., 4 (1966) 323.
- 11 E. Urbanovici, A. Varhelyi and E. Segal, Thermochim. Acta, in press.
- 12 E. Urbanovici and E. Segal, Thermochim. Acta, 107 (1986) 339.
- 13 E. Urbanovici and E. Segal, Thermochim. Acta, 135 (1988) 193.