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ABSTRACT 

The present study is a unified mathematical approach to the analysis of DSC data. It 
addresses the baseline correction to the DSC record as well as the solutions of DSC curves of 
single or multiple, physical and chemical transformations. In this study, previous results in 
the pertinent literature become particular solutions of the general model. 

The transition baseline in a physical transformation is identical with the instrumental 
signal. When an ‘empty’ reference pan is used and the results are extrapolated to zero 
heating-rate, a pseudo-baseline can be defined. Physical transformations in DSC display a 
straight line signal during transition, followed by an exponential curve during the post-transi- 
tion state. The model gives solutions for temperature and heat of transformation in both 
single and multiple physical transformations. 

The equation of the transition baseline in a chemical transformation accounts for: the 
pre-transition baseline; the heat-capacity change from that of the reactants to that of the 
products of the reaction; and the heating-rate difference between sample and reference 
materials. If there is no change in the heat capacities and either the reference pan is ‘empty’ 
or the thermal resistance is negligible, then the transition baseline is an extension of the 
pre-transition baseline. The DSC curve represents the corrected DSC record. 

The DSC curve of a chemical transformation is a bell-shaped graph whose skewness 
depends on the order of reaction. From the distinctive features of the DSC curve (i.e., 
relations at curve peak, inflection points and curve-bounded area), the apparent kinetic 
parameters are calculated (order of reaction, activation energy, pre-exponential factor and 
heat of reaction). The parameters specifically involved in these calculations are: peak 
temperature, inflection point temperature(s), shape index, area before peak, area after peak, 
asymmetry index, peak area and partial areas. The larger the asymmetry index, the smaller 
the reaction order. Final solutions contain the heating rate and the initial concentration 
(initial amount of reactant) as parameters. A zero-order chemical reaction displays an 
exponential signal and its solutions are particular. 

Two multiple reaction systems in DSC are analyzed: (a) two irreversible, first-order, 
parallel reactions, and (b) two irreversible, first-order, consecutive reactions. In the first case, 
the apparent kinetic parameters correlate with the area before the maxima/minima of the 
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DSC curve. In the second case, the main parameter is the deflection at the maxima/minima. 
General-order, mechanistically uncoupled reactions are also discussed. 

Emphasis is placed on the assumptions and the analytical development as well as on the 
final solutions and their applicability range. The mathematics of physical transformations are 

referenced with time as an independent variable, whereas chemical transformations relate to 
temperature. No attempt was made to express the final solutions in both time and tempera- 
ture coordinates. 

DIFFERENTIAL SCANNING CALORIMETRY 

Differential scanning calorimetry (DSC) (Fig. 1) monitors the difference 
in heat flow between a sample (i.e., reacting system) and a reference (i.e., 
inert system) when both systems are subject to a controlled linear tempera- 
ture change. With the onset of the physical/chemical transformation in the 
reacting system, the heat flow into the sample material adjusts to com- 
pensate for the exothermic/endothermic effects of reaction. Accordingly, 
the history of heat flow difference becomes a fingerprint for the transforma- 
tion occurring in the sample material during heating. 

For illustration purposes, it is assumed that the schematic in Fig. 1 refers 
to a DuPont 990 thermal analyzer (E.I. DuPont de Nemours Co., Inc., 
Instrument Products Division, Wilmington, Delaware). This particular in- 
strument uses a constantan disc as the (electrical) heater, supplying energy 
to the sample and reference pans. At the same time, the constantan disc 
serves as one element of the temperature-measuring sensors (Fig. 1). Tem- 
peratures at the raised sample and reference platforms are monitored by 
chromel-constantan thermocouples, formed by the junction of the constan- 
tan disc with a chrome1 wire at each platform position. The output dif- 
ference between these two thermocouples is monitored as the difference in 
energy flow (W) on the ordinate of the DSC record. The sample platform 
has an additional chromel-alumel thermocouple, whose output is monitored 
as temperature (K) on the abscissa of the DSC record. 

SAMPLE REFERENCE 

HEATER 

Fig. 1. Differential scanning 
linear temperature change. 

calorimetry technique. Sample and reference are subject to a 
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According to the design of the DSC instrument, the sample and reference 
heating platforms are expected to follow a linear temperature change (re- 
gardless of the instantaneous state of the sample or reference materials) 

T=T,+at (1) 

where T is the abscissa parameter on the DSC record (K), To is the initial 
temperature (K), (Y is the instrumentally imposed constant heating rate 
(positive or negative) for a given run (K s-l), and t is time (s). 

From Fig. 1, it is obvious that the heat transfer to the sample/reference 
pan occurs by conduction, where the contact zone may represent the 
controlling thermal resistance. The sensors are not located inside the sam- 
ple/reference pan. The instantaneous temperature state of the sample 
material depends on the exothermic/endothermic effects. Under these con- 
ditions, the actual temperatures in sample and reference materials slightly 
differ from each other as well as from the temperature registered on the 
abscissa of the DSC record. The same is true for the actual heating rates of 
sample and reference materials versus the instrumentally imposed heating 
rate. It is the design, operation and control of the instrument that minimizes 
these effects. With good contact between the sample/reference pan and the 
heating platform (Fig. l), and by using very thin and highly thermally 
conductive metal pans, the temperature inside the sample/ reference material 
will be reasonably well represented by the abscissa of the DSC record 
(physical transformations being an exception). 

At any time, the signal on the ordinate of the DSC record is the result of 
three effects: an instrumental signal; a signal due to the sensible heat 
difference between sample and reference materials; and a signal due to the 
physical/chemical transformations of the sample material (provided the 
reference material is inert). The sum of the first two effects represents the 
baseline of the DSC record. 

To assess the real signal produced by the physical/chemical transforma- 
tions in the reacting system, the DSC record requires a series of corrections: 
the non-linearity correction (referring to the signal output from the thermo- 
couple giving the temperature on the abscissa of the DSC record); the 
heating rate correction; the thermal lag correction (due to thermal resistance 
in the heat transfer from the heating platform to the sample/reference pan); 
and the baseline correction (connected with the variation in heat capacity 
during the transformation from the reactants to the reaction products). The 
first two corrections are technical problems (successfully solved by modern 
electronically equipped DSC instruments), whereas the last two are analyti- 
cal and are inherent in every model used for evaluating DSC data. 

The heat capacity of the sample material changes from that given by the 
mixture of the reactants, before the physical/chemical transformation, to 
that given by the mixture of the products of reaction after the transforma- 
tion. During the transformation, the heat capacity is that of a mixture of 
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reactants and products of reaction corresponding to the instantaneous 
progress of the reaction. The DSC record reveals three distinct states: 
pre-transition, transition, and post-transition. 

During a chemical transformation, the temperature of the sample material 
‘closely’ follows the instrumentally programmed temperature. In contrast, 
for physical transformations, the temperature history of the sample corre- 
sponds to the programmed temperature only in the pre-transition state. 
Once the instrument reaches the temperature of phase transformation, the 
sample temperature remains constant until the transition state is complete. 
In the post-transition state, the sample temperature strives to recover and to 
match the instrumentally programmed temperature. Nevertheless, the tem- 
perature of the reference material follows the instrumentally programmed 
temperature in both chemical and physical transformations. 

Based on previous work by Sandu et al. [l-4], the authors present here 
the mathematical modeling of differential scanning calorimetry with empha- 
sis on corrections to the DSC record, the physical/chemical transformations 
in DSC, and the apparent reaction-kinetic parameters derived from DSC 
data. 

CORRECTIONS TO THE DSC RECORD 

The non-linearity correction is usually performed by running standard 
materials whose melting points are very well established [5]. Once the 
non-linearity correction is accomplished, the heating-rate correction encom- 
passes the direct checking of the instrument performance at different heat- 
ing-rate settings [6]. Therefore, the only correction to the DSC records that 
needs to be analytically performed is the baseline correction. Thermal 
resistance (NB, thermal lag correction) is one of the parameters used in the 
baseline equations of the DSC record. 

The DSC record is a graph of the difference in energy flow (W) plotted on 
the ordinate, for a conventional representation of the exothermic/ 
endothermic effects, versus temperature (K) or time (s) on the abscissa. 
Besides the baseline equation, analysis of the DSC record requires the 
definition of the onset (beginning) and end points of a transformation (see 
Fig. 3, later). 

Selected references treating various aspects related to the mathematics 
developed in this section include: Heuvel and Lind [7], Brennan et al. [8, 91, 
Richardson and Burrington [lo], McNaughton and Mortimer [ll], Holba et 
al. [12], and Gorbachev [13]. 

Baseline assumptions and equations 

(a) The heating source (Fig. 2) is characterized by a uniform (time 
dependent) temperature, T,,,,,. 
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Fig. 2. Heat flow in DSC. Heat transfer to the sample/reference occurs by conduction. 

(b) The thermal resistance, R,, is the same for both platform-pan 
systems and is assumed to be constant for a given heating rate, (Y, imposed 
by the instrument. 

(c) There are no thermal gradients inside the sample/reference materials. 
The sample and reference materials are described by instantaneous tempera- 
tures T, and T,, respectively 

T, = To + a,t (2) 

T, = To + art (3) 

where (Y, and (Y, are instantaneous heating rates of sample/reference 
materials (K s-l), and subscripts s and r refer to sample and reference. 

The inertness of the reference material facilitates a precise control of its 
temperature. For (Y, = (Y, eqns. (3) and (1) are identical, that is, the reference 
material follows a linear time-temperature change. In contrast, exothermic/ 
endothermic effects in the sample material induce instantaneous variations 
in its heating rate, that is, (Y, is a function of time. This implies that the 
sample material follows a complex time-temperature change (eqn. (2)). 
Furthermore, sample and reference materials are instantaneously at different 
temperatures, a state that generates the difference in heat flow between the 
two systems which is the principle of DSC. 

One can define the holding pans together with the corresponding plat- 
forms (Fig. 2) as two closed systems at uniform temperatures T, and T,, 

respectively. The heat flow from the heating source to both the sample and 
reference systems (Fig. 2) is the result of heat transfer by conduction 

q,=(T Scl”PX - T, J/R 0 (4) 

4,=(T SO”PX - 0/R, (5) 

where R, is the thermal resistance (K W-i), assumed constant for a given 
instrumental heating rate. The difference in heat flow readily results as 

q=qs-qr=(Tr-T,)/&, (6) 

while the following equation gives its variation versus the temperature of the 
sample material 

(dq/dT,)a, = (a, - 4/R, (7) 

The difference in heat flow is due to the difference in sensible heat 
between sample and reference materials as well as the heat effect due to the 



272 

physical/chemical transformation in the sample material (provided the 
reference material is inert) 

q=(C,~,-Cp,)+~ (8) 

where C, and C, are the mass of the sample and reference material, 
respectively, multiplied by the corresponding heat capacity (J K-l), and b is 
the pure transformation signal (W). The + sign depends on the conven- 
tional representation of the exothermic/endothermic effects on the DSC 
record. 

The actual signal on the ordinate of the DSC record also encompasses the 
instrumental signal 

y=Y,+q= 0 Y + (Q, - Cp,) f b (9) 

where Y, is the instrumental signal (W). The instrumental signal is the DSC 
ordinate when sample and reference platforms are loaded with empty pans 
under the same instrument settings as the DSC record under consideration. 
This particular term takes into account eventual design/control imbalances 
between sample and reference systems, as well as the pan heat-capacity and 
the thermal resistance changes with temperature. Eliminating (Y, between 
eqns. (7) and (9) results in the DSC ordinate signal 

y = Y, + cy,{ C, - C,[l + R,(dq/dT,)]} f b (10) 

where the sum of the first two terms on the right-hand-side represents the 
baseline of the DSC record. 

Equations (9) and (10) are valid at any time during a physical/ chemical 
transformation, that is 

Yl = r, + 41 (11) 

Y2 = r, + q2 (12) 

y3 = r, + q3 (13) 

Y, = r, + a,{ G, - Cr[l + &(dq,/dT,)]}; b=O (14) 

Y trans =(~2-(fb))= r,+&s,- Cr[l +%@q,/dT,)]}; b>O 

05) 

~3 = r,++s, - Cr[l +&@q,/dT,)]); b=O (16) 

where the subscripts 1, 2 and 3 refer to pre-transition, transition and 
post-transition states, respectively; and yi, yt,,,, and y3 are the baseline 
equations in the three states of a physical/chemical transformation. 

Chemical transformations 

According to the type of transformation, physical or chemical, the transi- 
tion baseline (eqn. (15)) requires different analytical interpretations. In this 
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section, we develop the baseline equation for a chemical transformation. 
(The issue of a physical transformation is the subject of the next section.) 

The term C,, in eqn. (15) can be expressed by an additive relation 
describing the mixture of reactants and reaction products corresponding to 
the instantaneous progress of the reaction 

cs, = w -f) + G3f (17) 

where f is fraction conversion (dimensionless). After mathematical manipu- 
lations of eqns. (ll)-(17), the transition baseline takes the relation 

Y tram =y,+ {(y3-y,)+~,C,R,[d(y3-yl)/dT,1}f 

-+&,[d(~, -Y&W] (18) 
The first term in eqn. (18) represents the pre-transition baseline. The second 
term describes the heat-capacity change from that of the reactants to that of 
the products of reaction, and implies that the post-transition baseline may 
not be an extension of the pre-transition baseline. The third term is the 
result of the heating rate for the sample material which differs from that of 
the reference material. 

If the term a&R, in eqn. (18) vanishes, the equation of transition 
baseline simplifies to 

Y tram4 = Yl + (Y3 - Y, ) f; c&R,, -+ 0 @a) 
In practice, this is possible when the reference pan is ‘empty’ (i.e. C, = 0) or 
the thermal resistance is negligible (i.e. R, = 0). In the first case, the 
reference pan may be filled with air. The second case may be accomplished 
through proper design and operation. Nevertheless, a combination of ‘empty’ 
pan and negligible thermal resistance would technically justify eqn. (18a). 

If, in addition to a vanishing asCrR, term, the change in heat capacity of 
the reaction products versus the reactants is negligible (i.e. y1 = y3), the 
equation of transition baseline is an extension of the pre-transition baseline 

Y trams ‘Y,; a&R,, + 0 and y1 2: y3 (I8b) 

While eqns. (18a) and (18b) may be used in many DSC studies, let us 
consider the implications of applying the complete solution, eqn. (18). 

(a) Functions describing the pre-transition baseline ( yl), DSC ordinate 
signal during transition ( y2), and post-transition baseline ( y3) are linear 
and/or polynomial fittings of the DSC record data (Fig. 3); y, and Y, 
represent extrapolations to the transition range. 

(b) The term C, is a known quantity derived from the available informa- 
tion on the reference material (i.e. mass and heat capacity, where the latter 
can be a function of temperature). 

(c) For a given instrumental heating rate (Y, the thermal resistance R, is 
measurable from a physical transformation (see next section). 
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Fig. 3. DSC record af a chemical tra~sfo~ati~~ (endotherm). Transition baseline results 
from change in heat capacities. 

(d) From eqns. (7) and (I2), one can derive the relation 

(19) 

where Y, is a linear/polynomial fitting of the instrumental signal, and T, is 
approximated through the corresponding instrumental parameter, T. If the 
thermal resistance is negligible (i.e. R, 2: 0), eqn. (19) would predict 

iX,=1y,=cY; R,-0 (20) 

tinder the co~~tio~s of eqn. (ZO), the parameters in eqn. (18) referring to 
the sample rnate~~ can be replaced by the ~o~espondi~g instrumental 
quantities, o[ and T. 
(e) Fraction conversion in eqns. (18) and (18a) requires a trial-and-error 

procedure. First, line BE in Fig. 3 is assumed to be the transition baseline. 
This allows the definition of the DSC curve and the estimation of the 
apparent reaction-kinetic parameters (see later). Second, fraction conversion 
is related to the kinetic parameters via a relation derived from eqn. (47) (see 
later) 

(1 -f)-” df= C~-‘~~/~~ exp(-E;/RT) dT (21) 

where Co is the initial ~n~ntratio~ of the reactant (kg-mol ms3), n is the 
apparent order of reaction ~dim~nsionless), A is the apparent pre-exponen- 
tial factor [(kg-mol rnq3 s-‘)/(kg -ma1 mA3)“], E is the apparent activation 
energy (J kg-mol-‘), and R = 8314 J kg-mol-’ K-“, the gas law constant. 

Heuvel and Lind 171 used a statistical approach to determine the onset 
temperature of the transformation (point B in Fig. 3). A linear or second- 
order polynomial is fitted to the estimated pre-transition baseline, and the 
standard deviation of the point extrapolated to the abscissa at the peak of 
the DSC record (Fig. 3) is calculated. The procedure is repeated, while the 
end of the pre-transition baseline is shifted along the DSC record towards 
the transition range. The minimum value of the standard deviation at the 
extrapolated point will occur at a given temperature which is designated as 
the onset temperature of the tr~sfo~ation (point B in Fig. 3). A similar 
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procedure is used to define the end temperature of the transformation (point 
E in Fig. 3), where the estimated post-transition baseline is shifted along the 
DSC record towards the transition range. 

At the onset point, the fraction conversion has a constant value, actually 
close to zero. Similarly, at the end point, the value of the fraction conversion 
approaches unity. Assuming that the term 1 -fB,E has a corresponding 
finite value (Gorbachev [13]), where the subscript (B, E) denotes onset or 
end point, eqn. (21) can be integrated 

(22) 
where an approximate solution to the temperature integral was used (see 
eqn. (52a)). Although it implies a trial-and-error procedure to estimate the 
apparent reaction-kinetic parameters, eqn. (22) contains known data to solve 
for the onset or end temperature TB,E. Actually, this approach is related to 
the general solution to the transition baseline, eqn. (18). 

PHYSICAL TRANSFORMATIONS IN DSC 

During a phase transformation, the temperature of the sample material 
remains constant (at constant pressure) as the reference material continues 
to follow the instrumentally programmed temperature. When the phase 
transformation is completed, the sample temperature changes as fast as the 
heat transfer in the system allows to match the state of the reference sample. 
As a result, physical transformations in DSC have a unique signal output 
(Fig. 4). Their mathematics were recently advanced by Sandu and Singh [2]. 

This section summarizes previous work for systems involving single 
physical transformations in DSC [2], and extends the modeling to include 
systems encompassing multiple physical transformations. The analytical 
approach to a single physical transformation [2] differs from that employed 
by Gray [14], although under particular considerations both sets of results 
are in agreement. 

A D time (s) 

Fig. 4. DSC record of a physical transformation (exotherm). B-F defines the pseudo-baseline 
of the transformation. 
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Single physical transformations 

A physical transformation in DSC (Fig. 4) is characterized by an ordinate 
signal that follows a straight line with slope a/R, during the transition 
state, and an exponential curve whose argument is directly proportional to 
l/R, during the post-transition state [2]. The signs of both the slope and the 
argument depend on the exothermic/endothermic effects of the transforma- 
tion. In contrast with a chemical transformation (see later), the ‘curve peak’ 
in Fig. 4 marks the completion of the physical transformation. 

Assumptions 
(a) Equation (10) applies over the entire range of the DSC record of a 

physical transformation 

y = Y, + a,{ C, - Cr[l + R,(dq/dT,)]} + b 00) 

where the pure transformation signal during both pre-transition and post- 
transition states vanishes (i.e. b = 0). 

(b) The heating rate of the sample material, generally expressed by a 
relation derived from eqn. (7) 

(Y, = dT,/dt = a,/[1 + R,(dq/dT,)] (23) 

takes distinct values during the transformation. In the pre-transition state, 
eqn. (23) predicts a finite value 

(Y Sl =a,=a; dq,/dT, = 0 (24) 

According to eqn. (23), in the transition state, the heating rate of the sample 
material vanishes 

ff s2 
= 

0; dT,,/dt = 0 (25) 

because the instantaneous temperature is constant. During post-transition, 
the sample heating-rate starts at a maximum value [2] 

(Y s3,max = (q2.max + arCr)/Cs3 (26) 

followed by an exponential decrease, until it matches the reference heating 
rate, where q2,max is the difference in heat flow (W) at the end of transition 
(Fig. 4). 

(c) For a given instrumental heating rate (Y, parameters Y,, (Ye, R,, CSl, 
C,, and C, in eqns. (10) and (23) are assumed to be constant. 

(d) Equations of physical transformations have time as the independent 
parameter [2], whose origin is established at the onset of the transition state 
(point B in Fig. 4). By comparison, the mathematics of chemical transforma- 
tions is more conveniently developed in terms of temperature as the inde- 
pendent variable. 
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Transformation signal 
With the assumptions outlined above, the DSC ordinate signal of a 

physical transformation (Fig. 4) is described by three equations [2] 

Y, = r, + %G - cr> 
Y2 =Yl + br/hJt 

Y3 = [q2,max - (Yt- rO>l exp( -*) +YT 

(27) 
(28) 

(29) 

where the time parameter originates at the onset of the transformation (Fig. 
4), y: is the post-transition baseline (W), and t,,, is the time interval (s) 
required to bring the physical transformation to completion. The two 
parameters in eqn. (29) are defined [2] 

4 2,max =Yl + (ar/RO)fmax 
(30) 

(31) 

where yt is the asymptotic value of the DSC ordinate signal during the 
post-transition state (that is, the post-transition baseline). 

The ordinate signal during pre-transition, eqn. (27), is a constant; y, is 
implicitly the pre-transition baseline. Equations (28) and (29) are unique to a 
physical transformation (Fig. 4). During transition, eqn. (28), the ordinate 
signal, is a straight line with intercept yi and slope q/R,. In the post-tran- 
sition state, eqn. (29), the ordinate signal is an exponential function with a 
negative argument. The slope in eqn. (28) is totally independent of the 
physical/kinetic parameters of the sample material, In contrast, the argu- 
ment of the exponential function depends on sample material parameters as 
well as parameters linked to the instrument operation. The smaller the 
thermal resistance R, in eqn. (29), the faster the sample material reaches the 
instrumentally programmed temperature, once the physical transformation 
has been completed. 

From eqns. (15) and (25), the transition baseline of a physical transforma- 
tion takes a particular form 

ff = 
s2 0 

Combining eqns. (18), (25) (17), (27) and (30) results in the relation 

Y trans = Y, + 4c,, - a; a s2 = 0 

(32) 

084 
In fact, both expressions are identical as the term a,( C,, - C,) in eqn. (18~) 
is zero (i.e. no sensible heat-exchange is involved during the transition state 
of a physical transformation). 

The heating rate of the sample material is subject to step changes (eqns. 
(24)-(26)) at the onset and end of a physical transformation. However, a 
real DSC record implies gradual changes of the heating rate around points iB 
and E (Fig. 4). Consequently, the onset and end points are established at the 
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intersection of the corresponding extrapolated lines (points B and E in Fig. 
4). The final point of a physical transformation (point F in Fig. 4) does not 
have a counterpart in a chemical transformation. Point F is conventionally 
placed on the DSC record at the position where the post-transition ordinate 
signal ‘practically’ reaches its asymptotic value. 

Transformation parameters 
There are two important results associated with the DSC analysis of 

physical transformations: the heat and temperature of the transformation. 
In addition, the slope of the DSC signal during transition state is used in 
calculating the thermal resistance term. 

The area under the transition ordinate signal (corrected for the instrumen- 
tal signal) represents the total amount of heat involved in a physical 
transformation (Fig. 4) 

@4dmo = / ofmax(Yz -Ytrans) dt (33) 

where (AH,) is the heat of transformation (J kg-mol-‘), m, is the amount 
of sample material (kg-mol), and the transition baseline is given in eqn. (32). 
After mathematical manipulations, the result is [2] 

(A&) = (l/mo){bl - Yo)t,,, + [(Y~,~~ -Y~)L,,/~] > (34) 

where the first term in the braces on the right-hand-side represents the 
rectangular ABCD area (W s) and the second term is the triangular BEC 
area (W s) in Fig. 4. For a given amount of sample material, all parameters 
in eqn. (34) are measurable on the DSC record. In fact, one needs to 
evaluate the total ABED area (W s), corresponding to the term in braces in 
eqn. (34). 

Combining eqns. (27), (28) and (34), another analytical relation is derived 
for the heat of transformation. If one assumes an ‘empty’ reference pan (i.e. 
C, = 0) as well as the approximation a, = (Y, the heat of transformation can 
be calculated using the relation 

(AH,) = (l/m&%t,, + (&&2Ro)]; C,=Oand (Y,=(Y (35) 

G1 = cs1mo (36) 

a/R,=tan/3 (37) 

where c,i is the heat capacity of sample material (J kg-mol-’ K-‘) during 
the pre-transition state, and tan /3 is the slope (W s-l) of the transition BE 
line in Fig. 4. 

It can be demonstrated mathematically [2] that the term in braces in eqn. 
(34) is approximately equal to the total BEF area (W s) in Fig. 4. This 
approach is convenient because it does not require the definition of the 
instrumental signal Y,. However, the error is minimized only when both an 
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‘empty’ reference pan is used (i.e. C, = 0) and the result is extrapolated to 
zero heating rate 

(AH,) = (l/m,) (area BEF),,,+o; c, = 0 (38) 

where (area BEF) is confined between the transition and post-transition 
ordinate signal and a pseudo-baseline BF (Fig. 4). 

The temperature of transformation corresponds to the transformation 
onset (point B on Fig. 4). Real DSC records exhibit a slight dependency of 
the transformation onset on the heating rate. This behavior cannot be 
theoretically predicted; it originates with the thermal lag, the thermody- 
namics of physical transformations, etc. As a result, it is recommended that 
the onset temperature is extrapolated to zero heating rate. As a common 
practice, the transformation temperature in the melting of various standard 
substances is used to calibrate the temperature on the abscissa of the DSC 
record. 

The thermal resistance is an intrinsic property of the DSC instrument that 
depends on the design and operation of the equipment. This parameter 
changes with the heating rate and can be determined from the slope of the 
transition line of a physical transformation (Fig. 4 and eqn. (37)). The 
smaller the thermal resistance, the easier the interpretation of the DSC 
records and the more accurate the parameters associated with physical/ 
chemical transformations. 

Multiple physical transformations 

Assume a mixture of two solid substances (fine powders) subject to 
heating in DSC. Assume also that no chemical reaction between the two 
substances occurs. DSC records of such systems usually reveal “curve peaks 
and shoulders” that suggest a series of melting transformations correspond- 
ing to the number of phases formed. The location and magnitude of “curve 
peaks and shoulders” depend on the heats and temperatures of transforma- 
tions as well as on the amount of each phase in the system. 

In this section, we analyze a simplified system of two interfering physical 
transformations as the basis for modeling more complex systems. The 
purpose is to determine the parameters of the transformations. 

Assumptions 
(a) Two solid substances are mixed together to form a uniform sample 

material. During the melting process, the sample material is a two-phase 
system (going from solid-solid to liquid-solid to liquid-liquid state), without 
formation of any new phases. The two substances will reveal the transforma- 
tion parameters of the pure compounds. 

(b) There are no temperature gradients inside the sample material; this is 
equivalent to perfect mixing and heat transfer between the two phases. 
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Fig. 5. DSC record of two physical transformations (exotherm). Temperature of sample is 
delayed until both transformations have been completed. 

(c) According to Fig. 5, when the sample material reaches the onset 
temperature of the low-melting-point substance, the system remains at 
constant temperature until the first transformation is completed. While the 
system undergoes the post-transition state of the first transformation, the 
sample material reaches the onset temperature of the high-melting-point 
substance. The system remains at constant temperature until the second 
transformation is completed. 

(d) The quantitative relations developed for single physical transforma- 
tions apply in modeling multiple physical transformations. It is important 
that the temperature of the sample material is delayed with respect to the 
reference temperature until both physical transformations have been com- 
pleted. This creates analytical problems, particularly in determining the 
onset temperature of the second transformation (Fig. 5). 

Transformation parameters 
If the ordinate signal at point B, verifies eqn. (30) 

YB2 = r, + acs,,, ; C, = 0 and (Y, = (Y (39) 

where subscript 1 refers to the low-melting-point substance, then the 
pseudo-baseline B,F, is identical with the line B,B, (Fig. 5). Under any 
other circumstances, it is incorrect to approximate the pseudo-baseline of 
the first transformation with the line B,B,. It is consistent with the model 
developed in this study to define the pseudo-baseline B2F2 of the second 
transformation as depicted in Fig. 5. 

Equation (34) is the recommended solution for the calculation of the 
heats of transformation 

W4u) = (l/mO,d{bB, - ~kmx,~ + kY,, -Y~~brnax.~/~l~ (40) 

(AH,,) = (~/%,2){b'B2- %knax,2+ [b',2-YB2h~m,2/~1} (41) 

where subscripts 1 and 2 refer to the low-melting-point and high-melting- 
point substances, and both the heat-flow and time parameters are defined in 
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Fig. 5. The terms in braces in eqns. (40) and (41) originate with the integrals 
under the transition state lines B,E, and B,E, in Fig. 5. 

The transformation temperature for the low-melting-point substance is 
determined as in the case of a single physical transformation, that is, the 
onset corresponds to the abscissa of point B, in Fig. 5. In contrast, the 
sample temperature at point B, (the onset of the high-melting-point sub- 
stance) is behind the reference material 

T transf.2 = TB2 - RCl(YB2 - r,> (44 

where TB2 is the temperature (K) on the abscissa corresponding to point B, 
in Fig. 5. The relation was derived from eqns. (6) and (9). 

Discussion 

(a) Note that the transition-state lines of multiple physical transforma- 
tions are parallel lines with slope a/R,. 

(b) For a series of physical transformations whose signals interfere, the 
onset temperature of the first transformation, the final point and the 
pseudo-baseline of the last transformation in the series are directly located 
on the DSC record. The remaining transformation parameters are analyti- 
cally estimated. 

(c) The location and magnitude of “curve peaks and shoulders” depend 
on the temperature and heat of the transformations as well as on the amount 
of each phase in the system. Figure 6 is an illustration of the DSC record 
when the signal of the high-melting-point transformation is much smaller 
than that in Fig. 5. 

CHEMICAL REACTION KINETICS IN DSC 

The purpose of defining the transition baseline is to calculate the pure 
transformation signal, that is, the DSC curve 

+ b = Y - it,,,, (43) 

tlmek) 

Fig. 6. DSC record of two physical transformations (exotherm). Second transformation yields 
a smaller signal output. 
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where y is the ordinate signal of the DSC record, and y,,,,, is the transition 
baseline expressed by eqns. (18), (18a) or (18b). 

The DSC curve stays for the corrected DSC record. Equation (43) is 
implicitly defined over the transition state of a chemical transformation 
(between the onset and end temperature points). 

This section is based on previous work by Sandu et al. [3,4], and addresses 
systems involving single and multiple reactions. Selected references treating 
aspects similar to those analyzed here include Borchardt and Daniels [15], 
Kissinger [16], Horowitz 
[19], and Balarin [20]. 

Single chemical reactions 

and Metzger [17], Rogers and Smith [18], Ozawa 

The DSC curve of a chemical transformation (Fig. 7) is uniquely char- 
acterized by a bell-shaped graph that displays a peak (maximum or mini- 
mum) and two inflection points. The features of the DSC curve directly 
relate to the nature of the chemical transformation in the sample material 
during heating. As a result, the mathematics of the DSC curve allows the 
calculation of the apparent reaction-kinetic parameters. It is correct to 
define them as ‘apparent’ parameters as modeling implies that a series of 
assumptions are required to obtain the analytical solutions. 

Assume a homogeneous chemical reaction in a liquid phase, where species 
C undergoes an (apparent) transformation of the form 

nC -+ products of reaction (44) 

Its reaction rate follows a typical Arrhenius behavior, as described by the 
relation 

dC/dt = -A exp( - E/RT)C” (45) 

where C is the concentration (kg-mol mP3), and the apparent order of 
reaction can take any positive value, n > 0. 

Fig. 7. DSC curve of a chemical transformation (endotherm). The larger the asymmetry 
index, the smaller the reaction order. 
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If the change in the volume of the reacting system is negligible, the 
fraction conversion is used to describe the concentration of the limiting 
reactant [21] 

f = 1 - c/c, (46) 

From eqns. (1) (45) and (46) the progress of the reaction is expressed 

df/dT= C:-i(A/a) exp(-E/RT)(l -f)” (47) 

where the heating rate takes only positive values, (Y > 0. 
The pure transformation signal (that is. the deflection of the DSC curve) 

is a measure of the heat of reaction 

+_b = (AH,)m,(df/dt) (48) 

where the deflection of the DSC curve (W) is proportional to the rate of 
change of the fraction conversion, and m, is the initial amount of reactant 
in the sample material (kg-mol). In terms of temperature as independent 
parameter, it is easy to show that eqn. (48) becomes 

+b = a(AH,)m,(df/dT) (49) 

= (AH,)m,C,“-‘A exp( -E/RT)(l -f )” (50) 

According to eqn. (50) the pure transformation signal vanishes at the onset 
point (that is, at a temperature low enough such that the relation 
exp( - E/RT) = 0 is true) as well as at the end point where the reaction is 
completed (that is, the relation 1 -f = 0 is verified). The exponential term 
increases with temperature, whereas the binomial term in eqn. (50) de- 
creases. As a result, the DSC curve of a chemical transformation has a bell 
shape with a maximum or minimum, depending upon the exothermic/ 
endothermic effects. In contrast to the physical transformation, the curve 
peak does not correspond to the end of the chemical transformation (NB, 
except for zero-order reactions). 

A zero-order chemical reaction has a particular behavior 

+b= [(AH,) m&/Co] exp( - E/RT); n=O (51) 

where the DSC curve is an exponential function that does not display a 
maximum/minimum or inflection points (Fig. 8). The apparent “curve 
peak” in Fig. 8 corresponds to the end of the reaction. In contrast with 
physical transformations: (1) the sample material in a zero-order chemical 
reaction does follow the programmed temperature during the transition 
state; (2) the onset temperature is determined according to the analysis at 
chemical transformations (eqn. (22), for instance); and (3) at the end of 
transition, the pure transformation signal undergoes a step change (compare 
Figs. 4 and 8). 

Assumptions 
(a) Equation (50) applies to the DSC curve of a chemical reaction 

(including zero-order reaction). Assuming a known, pure transformation 
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: 
bm 

! 
Fig. 8. DSC curve of a zero-order chemical transformation (exotherm). Its solutions are 
particular. 

signal (eqn. (43) and Fig. 7) as well as defined parameters m0 (initial 
amount of reactant in the sample material) and C, (initial concentration of 
reactant in the sample material), eqn. (50) provides the basis to analytically 
determine the apparent reaction-kinetic parameters (order of reaction, 
activation energy, heat of reaction, and pre-exponential factor). 

(b) The ‘temperature integral’ present in the mathematics of DSC curves, 
that is 

e=Ir; 
exp( - E/RT) dT (52) 

is approximated by the expression 

e 2: ( RT*/E) exp( - E/RT) (5W 

where, for practical values of E/RT (that is, lo-50), the error in eqn. (52a) 
is negligible [22]. 

There are three features of a DSC curve that can be uniquely identified 
and used to develop the mathematics of chemical reaction kinetics: the 
position of the curve peak (maximum or minimum); the shape of the curve 
(inflection points); and the area bounded by the curve. 

Curve peak 
The solution to zero-order chemical reactions is distinct. Assume n = 0 in 

eqn. (47), and integrate for the boundary conditions f = 0 at To and f = 1 at 
T,; the result is 

1 = ( AR/C,E)( T;ia) exp( - E/RT,) ; n=O (53) 

where subscript m refers to the maximum/minimum of the curve (Fig. 8). 
Taking logarithms of eqn. (53) reveals a linear relationship 

ln[ a/T:] = In(AR/C,E) - (E/R)(l/T,); n=O (54) 

Combining eqns. (51) and (53), one derives the expression 

+&,,= (E(AH,)m,/R)(a/T,2); n=O (55) 
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where b, is the signal (W) at curve peak, and T, is the peak temperature 

(IQ 
Unlike physical and zero-order chemical transformations, the DSC curve 

of a general-order chemical reaction (n > 0) is mathematically a continuous 
function at the peak (Fig. 7), that is, [db/dT], = 0. This leads to the 
analytical condition (derived from eqn. (49)) 

[d2f/dT21m = 0; n>O (56) 

By substituting eqn. (47) into eqn. (56), the relation that defines the kinetics 
at the curve peak is 

a/T; = (nC,“-‘AR/E)(l - f)L-’ exp( - E/RT,); n>O (57) 

where f, is the fraction conversion (dimensionless) at the maximum/ 
minimum of the curve, i.e. 0 <f, < 1. The binomial term in eqn. (57) results 
from integrating eqn. (47) for the boundary conditions f = 0 at To and 

f =f, at T, 

(l-f)‘,-“=l+ [(~-l)co"-'AR/El(~~/~) exp(-E/RT,); F7#1 

(58) 

Note that, when n = 1, there is no need for an analytical expression of the 
binomial term in eqn. (57). 

From eqns. (57) and (58) the peak temperature changes with heating rate 

ln[ a/T:] = ln( C,“-‘AR/E) - (E/R)(l/T,); n>Oand n#l (59) 

If the order of reaction is unity, one finds from eqn. (57) 

ln[ a/T:] = ln( AR/E) - (E/R)(l/T,); n=l (60) 

an equation previously developed by Murray and White [23] and Rogers and 
Smith [24]. 

As stated by eqns. (54), (59) and (60) the graph of ln[(ll/Ti] versus l/T, 
is a straight line for chemical transformations in DSC, regardless of the 
reaction order. While all the equations have similar slopes -E/R, the 
intercepts relate to the order of reaction 

A = ln(AR/E) = const.; n=l (6Ia) 

A = ln(AR/E) - In Co; n=O &lb) 

A = ln(AR/E) + (n - 1) In Co; n>Oandn#l (61~) 

where A is the intercept of the graph ln[a/T:] versus l/T,. 

Discussion 

(a) Although the solutions originate with different assumptions in the 
analytical model, eqns. (59) and (61~) can be considered general relations, 
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valid for any order of reaction 

ln[ (u/T,21 = ln( C,“-‘AR/E) - (E/R)(l/T,); n>O (62) 

A = ln(AR/E) + (n - 1) In Co; PZaO (63) 

Equation (62) agrees with previous results by Kissinger [16]. 
(b) DSC data that relate the peak temperature to the heating rate and 

initial concentration, eqns. (62) and (63), allow calculation of three apparent 
kinetic parameters: the order of reaction, the activation energy, and the 
pre-exponential factor. The basic procedure is linear regression analysis. In 
addition, eqn. (55) is used to estimate the heat of reaction for zero-order 
transformations. 

(c) For a zero-order reaction, the absolute value of the deflection at curve 
peak is directly proportional to the a/T: term in eqn. (55). 

Inflection points 
The DSC curve of a chemical transformation (other than a zero-order 

reaction) has two inflection points (see solution to eqn. (66)). According to 
Kissinger [16], the shape index of the DSC curve is defined as the absolute 
value of the ratio of slopes at the inflection points (Fig. 7) 

+ = I tWdT),/tWdT), I; n>O (64) 

where subscripts 1 and 2 refer to the first and second inflection points and 
one always considers T, -c T2. Analytical manipulations of eqns. (49), (47) 
and (64) result in the expression 

(df/dT),{(W~T,Z) - [n/(1 -f h](df/dT),} . 

‘=I (d_f/dTh{(E/RT;) - [n/(1 -fLl(df/dTh) ’ 
n>O (65) 

The second derivative of the DSC curve at the inflection point vanishes, 
that is, [d2b/dT21i = 0. This leads to the analytical condition (derived from 

eqn. (49)) 

[d3f/dT31i = 0; n>O (66) 
where subscript i refers to the first/second inflection point. After mathe- 
matical manipulations of eqns. (47) and (66), one finds a quadratic expres- 
sion 

[2-(l/n)]X~-(3E/RT,2)X~+(~E/RT~2)[1-(2RT/E)] ~0; 

n>O (67) 

Xi = [n/(1 -f >iI (df/dT)i (68) 

whose solutions serve to estimate the corresponding terms in eqn. (65). 
It is assumed that the relation 2RT/E e 1 is always true [16]. In this 

case, eqn. (67) can be solved for the stated unknown, eqn. (68), to obtain 

[H/(I -f )iI(df/dT)i = (E/‘RTF)[(J * VI/‘]; n > 0 and n # 0.5 

y = (1 + 4/n)1’2; 6=(4-2/n) (69) 
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where the major issue is to define the + sign association with the right 
inflection point of the DSC curve. The analytical approach starts from the 
observation that the following inequality is always verified 

(1 -r>* ’ (1 -.f), (70) 

Next, eqn. (47) is integrated for the boundary conditions f = 0 at T, and 
f = fi at Ti, where subscript i refers to any one of the inflection points. The 
result can be brought to the form 

(l-f)~-“=l+ [(n_1)RT,‘/E](l_f)_“(df/dT)i; n#l (71) 

Combining eqns. (69) and (71), one finds that the binomials in the inequality 
(70) are solely functions of the reaction order 

(1-f)i={1-[(n-1)(3fy)/n8]}1A"-'); n > 0, n # 0.5 and n # 1 

(72) 

For a realistic range of the reaction order (e.g. 0.5 < n G 3), the right-hand- 
side of eqn. (72) can be calculated numerically. It follows that inequality 
(70) is verified only when the first inflection point is associated with the 
minus sign on the right-hand-side of eqns. (72) and (69). 

Using eqns. (69) and (72) to substitute terms in eqn. (65) the shape index 
becomes 

‘(3-y)[6-(3-y)] 

‘= (3+y)[S-(3+y)] 

ns-(n-1)(3-y) ‘A~-‘) 

ns-(n-1)(3+y) 1 
n > 0, n # 0.5 and n # 1 (73) 

For a temperature ratio very close to unity [16], the shape index of the DSC 
curve is primarily a function of the reaction order. 

The transformation kinetics at the inflection points is analytically related 
to the heating rate. From eqns. (47) (69) and (72), one finds the relation 

ln[ Lu/q’] = ln( { [(4n - 2)/(3 f y)] + 1 - n } [ C,“-‘AR/E]) 

-(‘/‘)(l/Ti); n>O and nz0.5 (74) 

where the minus sign solution applies to the first inflection point. The graph 
ln[a/TF] versus l/Ti is a straight line for chemical transformations in DSC; 
the relation holds for both inflection points. 

Discussion 

(a) For data analysis, eqns. (73) and (74) can be simplified using poly- 
nomial correlations to fit the corresponding n-functions 

+[ T,/T214 = -0.1228 + 0.259n - 0.0787n2; 0.5 < n < 2.5 (75) 
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ln[a/~:] = ln[(1.427 + l.l42n)C,“-‘AR/E] - (E/R)(l/T,); 

0.1 <n < 3 (76a) 

ln[ a/T:] = ln[(0.380 - 0.157 ln(n))C,“-‘AR/E] - (E/R)(l/T,); 

0.1 < n < 3 (76b) 

where the temperature at the first inflection point is always considered to be 
smaller than the temperature at the second inflection point. 

(b) The procedure to derive apparent kinetic parameters from relations at 
the inflection points implies data solely pertaining to only one DSC curve. 
The reaction order, activation energy and pre-exponential factor of a chem- 
ical transformation can be deduced from the system of eqns. (75), (76a), and 
(76b). 

Curve-bounded area 
At any temperature (Fig. 7), the area bounded by the DSC curve is 

estimated through the integral of the pure transformation signal, eqn. (50), 
as follows 

s = (AH&n&-‘,4 
J 

rexp(-E/RT)(l -f)” dT 
r, 

(77) 

where s is the partial area (W K) before a given temperature. At the 
maximum/minimum of the curve, it can be shown that eqn. (77) has a 
particular solution 

sn-l =c~(AH,)m,[l -n”(‘-“)I; n>,Oandn#l (78) 

where s, is the area before the peak (W K). To reach this result, one 
substitutes the binomial term in eqn. (77), i.e., (1 -f)“,, with its value 
calculated from eqn. (58), and performs the mathematics with the following 
assumptions: 2RT,/E -=z 1, respectively exp( - E/RT,) = 0, and 

Cl-‘A( RT:/E) exp( - E/RT,) = a; n>Oandn#l (59a) 

Note that, for a vanishing order of reaction, eqn. (78) takes the form 

s, = “(AH&m,; n=O (78a) 

The integral of eqn. (49) over the entire DSC curve is the expression of 
the total heat involved during the reaction 

s, = a( AH&n,; n>O (79) 

where s, is the peak area (W K) in Fig. 7. For zero-order reactions, the area 
before peak and the peak area are identical (Fig. 8). Combining eqns. (78) 
and (79) gives the area after peak (W K) 

s, - s, = a( AH,)m,n”(‘-“I; n>Oandnfl (79a) 
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The asymmetry index is the ratio of the area before peak to the area after 
peak of the DSC curve. Its value is derived by manipulating eqns. (78) and 

(79a) 

+* = n IAn-1) _ 1. 7 n>Oandn#l (80) 

where +*, the asymmetry index (dimensionless), is a function of the reaction 
order. 

Substituting eqns. (46) and (79) into eqn. (49) yields the expression 

dC/dT= -(G)(C,/s,) (81) 

whose integral form is shown to be 

c = C,(l -s/s,) (82) 

where s is the partial area before a given temperature (Fig. 7). Rearranging 
eqns. (l), (81), (82) and (45) results in the relation 

(+b) = [(A/a)(s,/C,)l-“](s,-s)” exp(-E/RT); n>O (83) 

This is the Borchardt and Daniels equation [15], which relates the apparent 
kinetic parameters with the deflection of the DSC curve at any temperature. 
At the peak of a zero-order reaction curve, eqn. (83) has a particular 
solution, eqn. (55). 

Discussion 

(a) The two distinctive areas bounded by the DSC curve, area before 
peak and peak (total) area, allow the calculation of the apparent reaction 
order and heat of reaction from eqns. (78) and (79). The asymmetry index, 
eqn. (80), is probably the simplest and most powerful result of the modeling 
of the DSC data. The larger the asymmetry index, the smaller the reaction 
order; DSC curves originating with less than second-order chemical trans- 
formations have larger areas before peak. Analytically related to the asym- 
metry index, the shape index (eqn. (75)) decreases as the reaction order 
becomes smaller. 

(b) Assuming absolute values for the parameters determined on the DSC 
curve (that is, signal deflection, partial area, and peak area), the logarithmic 
form of eqn. (83) can be used to determine the apparent reaction order, 
activation energy and pre-exponential factor 

In b = ln[ ( A/ar)( s/C,)‘-“] + n ln(s, -s) - (E/R)(l/T); n>O 

(84) 

where partial area and peak area have the dimension (W K), that is, the 
DSC curve is a plot whose abscissa represents temperature. The procedure 
applies non-linear regression analysis (of data solely pertaining to one DSC 
curve) to determine the coefficients in eqn. (84). 
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Fig. 9. DSC curve of two chemical transformations (exotherm). Mechanistically coupled 
reactions yield complicated mathematics. 

Multiple chemical reactions 

When a physical transformation is in progress, no other physical changes 
can start; the sample material remains at a constant temperature until the 
ongoing transformation is complete. In contrast, chemical reactions take 
place simultaneously at different rates and with different heats of reaction. 
The latter result in a much more complicated DSC curve. 

Even for simple cases, the DSC curve of a system undergoing multiple 
chemical reactions requires complicated mathematics. In this section, we 
present the analytical model of: (a) two irreversible, first-order, parallel 
reactions, and (b) two irreversible, first-order, consecutive reactions. 

A DSC transformation that involves two extents of reaction can display a 
series of patterns: two distinct maxima/minima separated by one mini- 
mum/maximum; one distinct maximum and one distinct minimum; and 
only one distinct maximum/minimum, preceded or followed by a less 
distinct one. This behavior depends on the amount of species as well as the 
magnitude of the reaction rates and exothermic/endothermic effects. Figure 
9 illustrates a DSC curve with two distinct maxima separated by one 
minimum, where both reactions are exothermic. 

In modeling multiple reaction systems, it is more convenient to work in 
terms of the extent of the reaction [21] 

S=(mj-mj,)/~j (85) 

where [ has the dimension (kg-mol), mj is the amount of species j (kg-mol) 
at a given time, mjo is the initial amount of species j (kg-mol), and v, is the 
generalized stoichiometric coefficient (dimensionless), positive for a product 
species and negative for a reactant species. Substituting the extent of 
reaction for the fraction conversion, eqn. (49) is redefined 

f b = - vj” AH, (dl/dT) (86) 

where the + sign designates the exothermic/endothermic effects. 

Assumptions 
(a) The transformations involved are two homogeneous chemical reac- 

tions of first-order. The system is characterized by two extents of reaction, 
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and its DSC signal is the result of both processes 

B=(*b,)+(fb,) (87) 

where B is the deflection of the DSC curve (W), and subscripts 1 and 2 refer 
to each reaction. 

(b) When only two first-order reactions are present in the system, eqns. 
(86) and (87) can be combined to give 

B = +H,,)(dS,/dT) + &&,)(dS,/dT); vj= -1 (88) 

where the extent of reaction is expressed as for a reactant species. From an 
analytical viewpoint, the features that identify the DSC curve of a multiple- 
reaction transformation are the number of distinct maxima and minima, 
their position and their magnitude. For a system of two extents of reaction, 
t&e DSC curve can display from one to three places where the first 
derivative vanishes. The subsequent modeling is based entirely on the 
mathematics of the DSC curve at the positions where the relation d B/dT = 0 
is true (Fig. 9). 

First-order parallel reactions 
Consider species C which undergoes two first-order parallel reactions 

C + products of reaction 1 

C + products of reaction 2 (89) 

The progress of reaction can be described by the following system of 
differential equations 

a(dS,/dT) = k,(m, - 5r- 52) 

a(dS,/dT) = k,(m, - <I- 52) 
(90) 

where k is the apparent constant of reaction (s-l) assumed to follow an 
Arrhenius behavior 

k=A exp(-E/RT) (91) 

To uncouple eqns. (90), divide the first by the second, integrate and 
substitute the result back into the system of eqns. (90) 

(dS,/dT) = (4/a)% exp( - G/RT) 

-[(4/a) exp(-K/RT) + (4/a) exp(-&/RT)]L 

(dL/dT) = (A&m, exp( -G/RT) (92) 

- [(4/a) exp(-K/RT) + (&/a) exp(-&/RT)]L 

Equations (92) are substituted into eqn. (88) and, from the condition 
d B/dT = 0, it can be shown that the following relation is valid 

- (Pz/TnTi) exp(P,/L) + (Pa/a) exp(&/L) + (&r/a) PS - smi/a 

(BP,‘,) exp(P,/T,) - (&/a) exp(P,,/T,) - (&r/a> = & - ‘Jell ’ 

n=l (93) 
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where T, is the temperature at a given maximum/minimum (K), 22, is the 
area under the DSC curve up to a given maximum/minimum (W K), and 
p,-& are constants which embody the kinetic parameters of the two 
reactions (see list of symbols). The other constants, &&t, are directly 
related to the first group (see list of symbols). 

Equation (93) for first-order parallel reactions correlates the heating rate, 
the temperature at the maximum/minimum and the area before the maxi- 
mum/minimum with the apparent kinetic parameters of the two reactions. 
Equation (93) is verified at any maximum/minimum; attention has to be 
given to the exothermic/endothermic sign of the term S,i. 

First-order consecutive reactions 
Consider a species C which undergoes two first-order consecutive reac- 

tions 

c-c* (94) 

C* --, products of reaction 

The following system of differential equations describes the progress of the 
reactions 

a(dS,/dT) = k,(m,, - St) 

a(dL/dT) = k,(m,, - S,) - k(mot - St) 

where the apparent constant of reaction is given by eqn. (91). 

(95) 

Equations (95) are substituted into eqn. (88) and, from the condition 
d B/dT = 0, an intermediate relation is derived that will require explicit 
solutions to a couple of ‘particular expressions’, before the mathematics can 
proceed. These particular expressions are 

(mot - St) = mol exp[ -(AI/~)(RT2/EI) exp(-Et/R01 (96) 

@&2)(mo2 - S2) = (l/k,)b - k[(A%) - (AfJ,2)1(mo, - S,>l (97) 

where the assumption was made that the extent of the first reaction is 
independent of the subsequent reaction. B is the deflection of the DSC 
curve. After mathematical manipulations, one finds the relation 

exp[ -&,(TA/a) exp(-&/Tmi)] = 
PlAi - PM exp{ -[(/VT,) + P,,(Tii/a) exd-PdT,)]} ’ 

n = 1 and (AH,,) z (AHR2) (98) 

where B,i is the deflection of the DSC curve at a given maximum/minimum 
(W), and the constants embody the kinetic parameters of the two reactions 
(see list of symbols). 
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Equation (98) for first-order consecutive reactions correlates the heating 
rate, the temperature at the maximum/minimum and the deflection at the 
maximum/minimum with the apparent kinetic parameters of the two reac- 
tions. Equation (98) is verified at any maximum/minimum; attention has to 
be given to the exothermic/endothermic sign of the term B,i. As expected 
(see reactions (94)), eqn. (98) does not encompass the quantity m02, the 
initial amount of the intermediate chemical species. 

General-order reactions 
Assume Fig. 9 is the DSC curve of a system of two mechanistically 

uncoupled reactions. In addition, consider that the deflection of the DSC 
curve verifies the conditions 

B = (+b,); T< T,, 

B = (+b,); Ta Tm3 
(99) 

where T,, and Tm3 are the peak temperatures (K) defined in Fig. 9. Under 
these circumstances, the apparent kinetic parameters of the first reaction are 
determined from the relations at the inflection point and the area before the 
peak, eqns. (76a) and (78). Similarly, the kinetic parameters of the second 
reaction result from the expressions at the inflection point and the area after 
the peak, eqns. (76b) and (79b). 

The procedure can be extended to systems of three mechanistically 
uncoupled reactions, where similar conditions, eqns. (99) are verified for the 
first and the third reactions. With known kinetic parameters, their DSC 
curves can be calculated (eqns. (49) and (47)) and subtracted from the DSC 
curve of the multiple reaction system. The result will be the DSC curve of 
the second reaction. 

The DSC curve of mechanistically coupled reactions yields analytically 
complicated mathematics, as the examples of first-order, parallel or consecu- 
tive reactions show. In these cases, the apparent kinetic parameters are 
contained in the coefficients of eqns. (93) and (98). Using non-linear 
regression analysis on a set of experimental data ((Y, Tmi, S, at m, = const.), 
the following parameters describing first-order parallel reactions can be 
determined from the values of /3,-& in eqn. (93): A,, E,, (AH,,), A,, E,, 
and (AH,). Similarly, experimental data ((Y, T,, B,, at m,, = const.) in 
eqn. (98) allow the calculation of the kinetic parameters of first-order 
consecutive reactions. Note that the correlating quantity for first-order 
parallel reactions is area before the maximum/minimum, whereas first-order 
consecutive reactions encompass the deflection at the maximum/ minimum. 

Nonetheless, mechanistically uncoupled reactions that do not verify eqns. 
(99) as well as mechanistically coupled reactions that do not follow eqns. 
(93) and (98), require further research before analytical solutions for their 
DSC curves can be derived. 
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CONCLUSIONS 

As a means of studying chemical reaction kinetics, differential scanning 
calorimetry offers the advantages of a fast and precise technique. Neverthe- 
less, the limitations inherently connected with DSC as well as the assump- 
tions made in modeling DSC data can not be ignored. For instance, single 
physical or chemical transformations can be mathematically described with 
precision, whereas multiple transformations in DSC amount to analytically 
complicated solutions that may require supplemental information from 
other techniques or may even question the use of DSC. The present study, 
probably the first to develop a unified mathematical approach to physical 
and chemical DSC transformations, is intended to form the basis for further 
research. The potential of this particular technique is far from being ex- 

hausted. 
(a) The DSC record, that is, the raw signal output, generally requires a 

baseline correction to identify the signal of the pure transformation, the 
DSC curve. For this reason, as well as for the purpose of defining the 
features of the DSC curve (onset and end temperatures, maximum or 
minimum, inflection points, partial or total curve area, etc.), the DSC 
technique (starting with data acquisition) implies extensive numerical analy- 
sis of data: curve fitting and smoothing, differentiation and integration as 
well as trial-and-error manipulations. 

(b) The final analytical solutions to the transition baseline of chemical 
and physical transformations (eqns. (18) and (32)) exemplify the differences 
among these processes. There are particular assumptions under which the 
pseudo-baseline to a single physical transformation is the line connecting the 
onset and final points (Fig. 4). Similarly, the circumstances are unique when 
considering the transition baseline of a single chemical transformation as an 
extension of the pre-transition baseline (Fig. 3). 

Equations (18) and (32) define the transition baseline of multiple chemical 
and physical transformations. Intermediary maxima/minima can not be 
used to ‘draw’ the transition baseline. For instance, in Figs. 5 and 9, it is 
incorrect to consider the curve minimum as the end point (respectively, the 
onset point) of any of the transformations involved. The only exception is 
line B2F2 in Fig. 5, that is, the pseudo-baseline of the second physical 
transformation. 

(c) Simplifying solutions or high accuracy in modeling DSC data require 
a series of physical assumptions: ‘empty’ reference pan, negligible heat- 
transfer resistance, and extrapolation to ‘zero heating-rate’. They have been 
incorporated into the equations describing DSC records of chemical and 
physical transformations. The validity of these assumptions needs the aware- 
ness of both the designer and operator of scanning differential calorimeters. 

(d) Analytical (mathematical) assumptions are an important element in 
the modeling of DSC. It is difficult to assess their impact on the final 
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solutions. For instance, using eqn. (77) to derive eqn. (79) yields a result that 
cannot be analytically reconciled 

s, = cu(AH,)m,[l - [l + (n - 1)(0,/8,)]““-“‘); n>Oandn#l 

000) 

where 8 is the temperature integral at the end (t), and respectively at the 
peak (m) of the DSC curve. Equations (79) and (100) are identical only for 
the vanishing square-bracketed term in eqn. (100) which analytically cannot 
be shown. This originates with the assumptions embedded in the model. 

Future work in modeling differential scanning calorimetry needs to vali- 
date the analytical results of this study as well as their associated degree of 
accuracy by contrasting the mathematics with known, well characterized, 
physical and chemical transformations. In this manner, not only some 
solutions will prove more useful and accurate than others, but new ap- 
proaches to multiple transformations in DSC could be developed. 

LIST OF SYMBOLS 

(area BEF) Area under the transformation curve (W s) in Fig. 4 
A Apparent pre-exponential factor (kg-mol m-3s-‘)/(kg-mol 

m-3)n 
b 

B 
B 

;: 
C 
C* 
E 

/” 
F 
k 
m 

m0 

n 

4 

Pure transformation signal (W); deflection of the DSC curve 
when a single reaction occurs (W) 
Deflection of the DSC curve when multiple reactions occur (W) 
Beginning or onset point of a physical/chemical transformation 
Heat capacity (J kg-mol-’ K-‘) 
Chemical species C (reactant); concentration (kg-mol m-‘) 
Heat content (J K-i) 
Intermediate chemical species C* 
Apparent activation energy (J kg-mol-‘) 
End point of a physical/ chemical transformation 
Fraction conversion of the reactant (dimensionless) 
Final point of a physical transformation 
Apparent constant of reaction (kg-mol rnp3 s-‘)/(kg-mol m-3)n 
Amount of reactant (kg-mol) 
Initial amount of sample material (kg-mol) 
Apparent order of reaction (dimensionless) 
Difference in heat flows to the sample and reference materials 

(W) 
4, Heat flow to the reference material (W) 

4, Heat flow to the sample material (W) 
R Gas constant, 8314 J kg-mol-’ K-’ 
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&I 
s 

s 

t 

T 

Y 

Yl 

Y2 

Y3 

Y3” 

Y tral% 
r, 

Heat transfer resistance (K W-‘) 
Integral value of DSC curve when a single reaction occurs (W 

K) 
Integral value of DSC curve when multiple reactions occur (W 

K) 
Time (s); zero time is fixed when the transition state of a 
physical transformation starts 
Temperature (K); abscissa parameter of a DSC record 
Ordinate signal (W) of a DSC record 
Signal of DSC record during pre-transition (pre-transition base- 
line) (W) 
Signal of DSC record during transition (W) 
Signal of DSC record during post-transition (post-transition 
baseline) (W) 
Asymptotic value of y, (post-transition baseline in a physical 
transformation) (W) 
Transition baseline (W) 
Instrumental signal (W) 

Greek letters 

ff 

Y 

Heating rate (K s-l); without a subscript refers to the heating 
rate instrumentally imposed 

= arctan (a/R,), angle (deg.) defined in Fig. 4 
= A,E,/R 

= A2E2/R 
= E,/R 
= E,/R 

= ~oWM 
= ~,(A~,,) 
=<P,/P,>' 

=(P2/P4>2 

= P3 - I34 

= P4 - P3 

= @2/&~4 

=&i'KWd - W&X1 
= P,,WW/KWd - (Aff,)l 

I E? 
= a:,/;3 
= P3 + P4 

Apparent heat of transformation (.I kg-mol-‘) 
=(4-2/n) 
= (1 + 4/n)“2 
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Subscripts 

0 
1 

2 

3 

B, E 
i 

j 
m 
max 

r 
S 

source 
t 
trans 
transf 

Extent of reaction (kg-mol) 
Generalized stoichiometric coefficient (dimensionless) 
Shape index (dimensionless) 
Asymmetry index (dimensionless) 
= (RT*/E) exp[ - E/( RT)], temperature integral 

Initial; at zero time 
Reaction 1; pre-transition state; first inflection point 
Reaction 2; transition state; second inflection point 
Post-transition state 
Beginning or end point 
Given maximum/ minimum; given inflection point 
Chemical species j 
Maximum/ minimum in a chemical transformation 
End of transition state (curve maximum) in a physical transfor- 
mation 
Reference material 
Sample material 
Heating source 
Total 
Transition baseline 
Physical transformation 
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