THERMOCHEMICAL STUDIES IN THE SODIUM-CHROMIUM-OXYGEN SYSTEM

S. SAMPATH, S.K. SALI and N.C. JAYADEVAN

Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085 (India) (Received 15 August 1989)

ABSTRACT

The compound NaCrO₂ in the sodium-chromium-oxygen system is important from the point of view of corrosion of stainless steel by oxygen-contaminated sodium in fast reactors. Thermogravimetry, differential thermal analysis in different atmospheres, and X-ray powder diffraction studies on the products showed NaCrO₂ to be stable in argon up to 1200 °C. The compound was stable in a CO₂ atmosphere up to at least 900 °C, but in oxygen it was oxidised above 350 °C to a mixture of Na₂CrO₄ and Cr₂O₃. NaCrO₂ was found to be the only phase of chromium(III) which could be obtained from solid-solid reactions of Na₂CO₃ and Cr₂O₃.

Na₂CrO₄ showed a phase transition at 410 ± 5 °C with a heat of transition of 5.9 kJ mol⁻¹.

INTRODUCTION

In the sodium-chromium-oxygen system, NaCrO₂ has been reported to be the only stable double oxide phase in contact with chromium and liquid sodium [1]. This compound is thus important from the point of view of corrosion of stainless steel by sodium used as a coolant in fast reactors. The thermal stability of this compound has not been established [2]. NaCrO₂ has been reported to decompose reversibly at 795 °C to a mixture of Na₂O and Cr_2O_3 [3], but this observation needs confirmation, since it has been reported earlier that NaCrO₂ can be prepared by heating a mixture of Na₂CO₃ and Cr_2O_3 in vacuum at 800 °C [1]. The behaviour of NaCrO₂ at higher oxygen potentials has not been studied. Apart from Na₂CrO₄ and Na₂Cr₂O₇, a number of phases with chromium in the +4 and +5 oxidation states, such as Na₂CrO₃, Na₄CrO₄, NaCr₃O₈ and Na₃CrO₄, have been reported to exist at higher oxygen potentials [2,4].

The present work is a study on the thermal stability of NaCrO₂, both in argon and oxygen, from ambient temperature to $1200 \,^{\circ}\text{C}$ by thermogravimetric (TG), differential thermal analysis (DTA) and X-ray powder diffraction (XRD) methods. In addition, thermal studies have been carried out on

mixtures of Na_2CO_3 and Cr_2O_3 in different ratios, in both argon and oxygen, to establish the possibility of formation of other mixed oxides.

EXPERIMENTAL

Na₂CO₃ (GR) and Cr₂O₃ (Specpure) were mixed in ratios of 2:1 and 1:1, and 100 mg samples were heated in a Mettler Thermoanalyser up to a maximum temperature of 1200 °C, with simultaneous TG and DTA recording. The experiments were carried out at a heating rate of 6 °C min⁻¹ with either pure argon or oxygen gas flowing at a rate of 100 ml min⁻¹. TG and DTA curves were also recorded under controlled cooling at a rate of 6 °C min⁻¹. The measured temperatures had an accuracy of $\pm 5^{\circ}$ C.

Thermograms of NaCrO₂, Na₂CrO₄ \cdot 0.5H₂O and Na₂Cr₂O₇ \cdot 2H₂O were also recorded in an oxygen atmosphere. NaCrO₂ was prepared by heating a 1:1 mixture of Na₂CO₃ and Cr₂O₃ at 900 °C in argon. Na₂CrO₄ \cdot 0.5H₂O, a new hydrate, was obtained by evaporation, at 100 °C, of an aqueous solution containing Na₂CO₃ and CrO₃ in 1:1 ratio. Na₂Cr₂O₇ \cdot 2H₂O was also prepared by evaporation of a solution containing Na₂CO₃ and CrO₃ in 1:2 ratio.

X-ray powder diffraction patterns of the products obtained at different temperatures were taken on a Siemens diffractometer using Cu $K\alpha$ radiation ($\lambda = 1.54178$ Å).

RESULTS AND DISCUSSION

X-ray powder diffraction patterns of the various heated products are given in Fig. 1. X-ray data for NaCrO₂, Cr_2O_3 and Na₂CrO₄ taken from the literature are included for comparison. The results of thermal analysis are presented in Figs. 2, 3 and 4, and the observations are summarized in Table 1. Important features are discussed in the following sections.

 $Na_2CO_3 + Cr_2O_3$ (1:1)

Figure 2 shows the TG and DTA curves in argon (C and D) and in oxygen atmospheres (E and F) obtained for a mixture of Na₂CO₃ and Cr₂O₃ taken in the ratio 1:1. TG and DTA curves of Na₂CO₃ are also given for comparison (A and B). In an argon atmosphere, although most of the weight loss occurs between 600 °C and 800 °C, the weight loss begins at ca. 400 °C. This weight loss is associated with an endothermic DTA peak with its maximum at 750 °C. Na₂CO₃, on the other hand, is found to be thermally stable up to 850 °C, its melting point. This shows that the interaction of Na₂CO₃ and Cr₂O₃ starts above 400 °C with the evolution of CO₂, and is

Fig. 1. X-ray powder patterns (Cu $K\alpha$). The heights of the lines indicate the relative diffraction peak intensities. A, Na₂CrO₄·0.5H₂O; B, Na₂CO₃ + Cr₂O₃ heated to 900°C in argon for 2 h; C, NaCrO₂; D, 2Na₂CO₃ + Cr₂O₃ heated to 800°C in oxygen for 2 h; E, Na₂CrO₄; F, Na₂CO₃ + Cr₂O₃ heated to 800°C in oxygen for 2 h; G, Cr₂O₃; H, NaCrO₂ heated to 800°C in oxygen for 2 h.

complete at 900 °C. The X-ray powder pattern of the green product obtained at 900 °C (Fig. 1B) shows mainly lines due to NaCrO₂ [2]. Additional weak lines observed in the pattern could be attributed to unreacted Cr_2O_3 . The weight loss observed was 14%, as compared with the expected loss of 17% for the reaction

$$Na_{2}CO_{3} + Cr_{2}O_{3} \rightarrow 2NaCrO_{2} + CO_{2}$$
⁽¹⁾

These results indicated that the reaction was not quantitative. Continued heating at 900°C, however, led to disappearance of the X-ray lines due to Cr_2O_3 , and pure NaCrO₂ remained as the final product. Earlier experimental studies by Knights and Phillips had suggested that NaCrO₂ remains a solid up to at least 790°C [5]. However, Barker and Hooper found that NaCrO₂ decomposes reversibly at 795°C to a mixture of Na₂O and Cr₂O₃ [3]. For the reaction

$$\frac{1}{2}Na_2O + \frac{1}{2}Cr_2O_3 \rightarrow NaCrO_2$$
(2)

the reported ΔH value is -101.4 kJ mol⁻¹ [1]. Hence the decomposition of NaCrO₂ to a mixture of Na₂O and Cr₂O₃ should show a significant DTA peak around 795°C [6]. However, no DTA peak was observed on heating (or cooling) NaCrO₂ in argon in the range from ambient to 1200°C. The present TG and DTA curves show that NaCrO₂ is stable and remains a solid up to 1200°C. Thermogravimetric studies in a CO₂ atmosphere and

TABLE 1

Reacting materials	Atmo- sphere	Tempe- rature range (°C)	Weight change (%)	DTA peak temp. (°C), heating curve	Reaction products confirmed by XRD	DTA peak temp. (°C), cooling curve
$\frac{Na_2CO_3}{+Cr_2O_3}$	Argon O ₂	600- 800 350- 800	-14 -7	750 endo 775 endo	NaCrO ₂ Na ₂ CrO ₄ + Cr-O ₂	No peak 775 exo 410 exo
$2Na_2CO_3 + Cr_2O_3$	Argon	700- 900	-12	670 endo 810 endo	$NaCrO_2$ + Na_2CO_3	790 exo
	O ₂	350- 800	-10.5	800 endo	Na ₂ CrO ₄	790 exo 390 exo
NaCrO ₂	Argon	25–1200	0.0	No peak	NaCrO ₂ stable up to 1200 ° C	No peak
	CO ₂	25- 900	0.0	No peak	NaCrO ₂ stable up to 900 ° C	No peak
	O ₂	300- 700	+9	500 exo 775 endo	Na_2CrO_4 + Cr_2O_3	_
$Na_{2}CrO_{4}$ $\cdot 0.5H_{2}O$	O ₂	100- 200 200- 900	-4.5 0.0	120 endo 450 endo 820 endo	Na ₂ CrO ₄ Na ₂ CrO ₄	-
$\frac{Na_{2}Cr_{2}O_{7}}{\cdot 2H_{2}O}$	O ₂	100- 250 250- 500 > 500	-12 0.0 slow loss	150 endo 390 endo	$\begin{array}{c} Na_2Cr_2O_7\\ Na_2Cr_2O_7\\ Na_2CrO_4\\ +Cr_2O_3 \end{array}$	-

Summary of TG and DTA curves in the Na-Cr-O system

exo, Exothermic; endo, endothermic.

the X-ray pattern of the product showed that $NaCrO_2$ is formed when a 1:1 mixture of Na_2CO_3 and Cr_2O_3 is heated at 900 °C. Similar studies with $NaCrO_2$ established its stability in a CO_2 atmosphere up to 900 °C. This ruled out the possibility of the reaction

$$2NaCrO_2 + CO_2 \rightarrow Na_2CO_3 + Cr_2O_3$$
(3)

in the temperature range studied.

Thermogravimetric curves of a 1:1 mixture of Na₂CO₃ and Cr₂O₃ in oxygen (Figs. 2E and 2F) show that the weight loss starts above 250°C and is complete at ca. 750°C. The product was yellowish in colour, indicating the oxidation of Cr¹¹¹, and was also hygroscopic. The X-ray powder pattern (Fig. 1, F) indicated that the product was a mixture of Na₂CrO₄ and Cr₂O₃. However, no significant DTA peak could be observed in the temperature range 350–700°C corresponding to the weight loss observed. This is probably because the heat absorbed during decomposition of Na₂CO₃ is com-

Fig. 2. TG and DTA plots: A, TG curve of Na_2CO_3 in argon; B, DTA curve of Na_2CO_3 in argon; C, TG curve of $Na_2CO_3 + Cr_2O_3$ in argon; D, DTA curve of $Na_2CO_3 + Cr_2O_3$ in argon; E, TG curve of $Na_2CO_3 + Cr_2O_3$ in oxygen; F, DTA heating curve of $Na_2CO_3 + Cr_2O_3$ in oxygen; G, DTA cooling curve of heated product of $Na_2CO_3 + Cr_2O_3$ in oxygen.

pensated by the heat evolved during oxidation of Cr^{III} to $Cr^{\bar{v}I}$ by oxygen. An endothermic peak was observed at 775°C due to melting of Na₂CrO₄. The cooling DTA curve (Fig. 2G) showed two exothermic peaks, one at 775°C and the other at 410°C. The former could be attributed to solidification of the molten Na₂CrO₄ and the latter to a phase transition. Both the DTA peaks were reversible and were reproduced as endotherms on heating.

 $Na_2CO_3 + Cr_2O_3$ (2:1)

The TG and DTA curves obtained for mixtures of Na_2CO_3 and Cr_2O_3 in the 2:1 ratio in argon and oxygen are shown in Fig. 3. In argon, the XRD analysis of the product obtained at 900°C indicated it to be a mixture of NaCrO₂ and Na₂CO₃. No new phase of Cr^{III} containing a smaller proportion of chromium than that present in NaCrO₂ could be identified. The possibility of Na₃CrO₃ has been suggested by Gross et al. [1] in their studies on the Na-Cr-O system. The DTA curves show two endothermic peaks

400

800 200 600 TEMP. (C) Fig. 3. TG and DTA curves of $2Na_2CO_3 + Cr_2O_3$. A, TG curve in argon; B, DTA heating curve in argon; C, DTA cooling curve of heated product in argon; D, TG curve in oxygen; E, DTA heating curve in oxygen; F, DTA cooling curve of heated product in oxygen.

1000

with respective maxima at 670°C and 810°C. The former peak could be attributed to formation of NaCrO₂ from Na₂CO₃ and Cr₂O₃ and the latter to melting of excess Na₂CO₃. The lowering of the melting point of Na₂CO₃ from 850°C is probably caused by the presence of NaCrO₂. The cooling curve (Fig. 3C) has an exothermic DTA peak at 790°. Heating the mixture in oxygen gave Na₂CrO₄. The weight loss observed from 250-800°C was 10.5%, as compared with the expected value of 11% for the formation of Na_2CrO_4 from $2Na_2CO_3 + Cr_2O_3$. The only sharp DTA peak observed was an endothermic peak at 800°C caused by the melting of Na₂CrO₄. On cooling, however, two sharp exothermic peaks around 790°C and 390°C were observed, which were attributed, respectively, to the solidification and phase transition of Na₂CrO₄.

NaCrO₂, Na₂CrO₄ \cdot 0.5H₂O and Na₂Cr₂O₇ \cdot 2H₂O

The thermograms recorded for NaCrO₂ (A and B), Na₂CrO₄ \cdot 0.5H₂O (C and D) and Na₂Cr₂O₂ \cdot 2H₂O (E and F) in an oxygen atmosphere are given

8 10

Fig. 4. TG and DTA curves in oxygen. A, TG curve of NaCrO₂; B, DTA curve of NaCrO₂; C, TG curve of Na₂CrO₄ $\cdot 0.5H_2O$; D, DTA curve of Na₂CrO₄ $\cdot 0.5H_2O$; E, TG curve of Na₂Cr₂O₇ $\cdot 2H_2O$; F, DTA curve of Na₂Cr₂O₇ $\cdot 2H_2O$.

in Fig. 4. It was found that NaCrO₂ was oxidised in oxygen above 350°C, accompanied by a broad exothermic peak. The X-ray powder diffraction pattern of the product (Fig. 1H) showed it to be a mixture of Na₂CrO₄ and Cr₂O₃. The weight gain observed up to 700°C was 9% against an expected value of 11.2%. The weight gain expected for oxidation of NaCrO₂ to Na₂Cr₂O₇ is 22.4%. The product gave an endothermic peak at 775°C characteristic of the melting of Na₂CrO₄. These results established that NaCrO₂ is oxidised to a mixture of Na₂CrO₄ and Cr₂O₃ rather than to Na₂Cr₂O₇.

Thermogravimetry of the hydrate of sodium chromate (Fig. 4C) shows a weight loss of 4.5% due to water below 200 °C, and the product gave an X-ray pattern of Na₂CrO₄ that differed from that of the starting compound (Fig. 1A). On the basis of the weight loss at 200 °C, a composition of Na₂CrO₄ $\cdot 0.5H_2O$ could be assigned to the hydrate. This hemihydrate has not been reported in the literature, but it could also be prepared by heating NaCrO₂ or a mixture of Na₂CO₃ and Cr₂O₃ in air up to 900 °C and cooling the product. Na₂CrO₄ formed at 900 °C is converted to the hemihydrate on cooling when moisture is absorbed. Na₂CrO₄ is chemically stable in oxygen

up to 900 °C. It showed two endothermic peaks with maxima at 450 °C and 820 °C. Both peaks were reversible. The peak at 450 °C is probably due to a phase transition from an orthorhombic to a hexagonal phase. A reddish brown hexagonal phase of Na₂CrO₄ has been reported from high temperature X-ray patterns at 522 °C [7]. The peak at 820 °C is due to the melting of Na₂CrO₄. The transition and melting temperatures were accurately determined to be 410 °C and 795 °C, respectively, using K₂Cr₂O₇ as standard (melting point, 395 °C; heat of fusion, 36.6 kJ mol⁻¹) [8]. From DTA peak area measurements, the heat of transition and heat of fusion were calculated using the expression $\Delta H = KA/MW$, where K is a calibration constant, A is the peak area, M is the molecular weight and W is the weight of the sample. The values found were $\Delta H_{\rm T}$ (transition) = 5.9 kJ mol⁻¹ and $\Delta H_{\rm F}$ (fusion) = 9.7 kJ mol⁻¹.

 $Na_2Cr_2O_7 \cdot 2H_2O$ was found to lose its water of crystallisation below 200°C, and was stable in oxygen up to 500°C. A sharp DTA peak at 390°C in the thermogram is caused by melting of the anhydrous dichromate, which was found to lose weight above 500°C. Heating of $Na_2Cr_2O_7$ above 600°C for a longer period gave a mixture of Na_2CrO_4 and Cr_2O_3 , as was confirmed from XRD patterns.

The following conclusions can be inferred.

(i) NaCrO₂ is stable and remains a solid up to $1200 \,^{\circ}$ C in argon. It is stable in a CO₂ atmosphere up to 900 $\,^{\circ}$ C. In oxygen, it is oxidised above 350 $\,^{\circ}$ C to a mixture of Na₂CrO₄ and Cr₂O₃ rather than to Na₂Cr₂O₇.

(ii) NaCrO₂ is the only phase of chromium(III) that can be obtained from solid-solid reactions of Na₂CO₃ and Cr₂O₃.

(iii) Na₂CrO₄ was found to undergo a phase transition at 410 °C with a heat of transition of 5.9 kJ mol⁻¹. The compound is stable up to 900 °C.

(iv) $Na_2Cr_2O_7$ decomposes to a mixture of Na_2CrO_4 and Cr_2O_3 above 600 °C in oxygen.

ACKNOWLEDGEMENT

The authors thank Dr. D.D. Sood, Head, Fuel Chemistry Division, for constant encouragement and discussions.

REFERENCES

- 1 P. Gross, G.L. Wilson and W.A. Gutteridge, J. Chem. Soc. A, (1970) 1908.
- 2 T.B. Lindemer, T.M. Besmann and C.E. Johnson, J. Nucl. Mater., 100 (1981) 178.
- 3 M.G. Barker and A.J. Hooper, J. Chem. Soc., Dalton Trans., (1975) 2487.
- 4 C.C. Addison and M.G. Barker, J. Chem. Soc., (1965) 5534.

- 5 C.F. Knights and B.A. Phillips, in F.P. Glasser and P.E. Potter (Eds.), High Temperature Chemistry of Inorganic and Ceramic Materials, The Chemical Society, London, 1977, p. 135.
- 6 B.J. Shaiu, P.C.S. Wu and P. Chiotti, J. Nucl. Mater. 67 (1977) 13.
- 7 Powder Diffraction File: Inorganic, A.S.T.M., Philadelphia, 1981, 25-1107.
- 8 R.C. Weast, Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 1987, p. B220.