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ABSTRACT 

Using arguments derived from classical chemical thermodynamics, it is found that the 
isobaric, non-isothermal chemical reaction rate is in general a function of heating rate as well 
as of temperature and composition. However, non-isothermal reaction rate expressions have 
usually been identified with the corresponding isothermal rate expressions in the literature on 

non-isothermal chemical reaction kinetics. 
Generalizing from a specific example, a method is proposed according to which changes in 

isothermal reaction kinetic expressions may be made to agree with thermodynamics. 

INTRODUCTION 

The isobaric chemical reaction rate has generally been taken as a function 
of temperature (and composition) only in non-isothermal reaction kinetics 
[1,2]. An exception is a recent report according to which the non-isothermal, 
chemical reaction rate contains an extra term that vanishes under isothermal 
conditions [ 31. 

The present inquiry into non-isothermal restrictions on chemical reaction 
rates in general is based on classical, chemical thermodynamics. The results 
have consequences for classical, chemical kinetics, taking both theories to be 
compatible (macroscopic) subtheories of chemical substances. 

The analysis rests on the fundamental assumption that a definite tempera- 
ture and pressure may be assigned to systems out of equilibrium, an 
assumption on which isothermal analysis is also based. This requires that the 
system remains fairly close to thermal and mechanical equilibrium, but not 
to reaction (chemical) equilibrium [4,5], at any instant. This might be 
accomplished in a well-stirred sample under varying external conditions, 
provided the rate of external change is not too high. In a solid or less 
well-stirred sample, the temperature and pressure (?) may vary throughout 
the system. Nevertheless, local thermal and mechanical equilibrium may 
exist approximately [4,5]. In such cases, T and P may be taken as the 
average values over the system, and may be used to derive approximate, 
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average changes in thermodynamic and related functions. In the last section 
of the present work, an example is given in which the analysis requires the 
system to be divided into two parts, each of slightly different temperature. 

THERMODYNAMIC RESTRICTIONS ON NON-ISOTHERMAL REACTION RATES 

Part A 

A chemical reaction C,alA, = 0 in a closed system comprising one or 
several homogeneous phases is considered. A, is a participating species and 
a, the corresponding stoichiometric coefficient, taken to be negative (or 
positive) for species on the left- (or right-) hand side of the reaction equation 
as usually written. The reaction may consist of several kinetic steps, but the 
number of any intermediate species formed is assumed to be zero or 
constant. This means that E = (n, - nJo)/ai is the same for all i. n, and n,, 
are the number of moles of species i present at any time and before the 
reaction starts, respectively. 

The change in Gibbs energy AG is in general a function of T, P and e. In 
accordance with assumptions made in the Introduction, we may write 
AG = AG(T(t), P(t), c(t)) to indicate the dependence on time t. For a 
change in the variables we have 

Ad= (i3A~/i3++ (~AG/~T)?+ (aac/ap)i, (1) 
where Ad = GAG/St, etc. St is in principle a free variable, only limited by 
the requirement of approximate thermal and mechanical equilibrium, as 
stressed in the preceding section. 6 is in principle a function of T, P, ? and 
P. Also, i( TP const.) f 0 except at equilibrium, when f= P = 0. Equation 
(1) reduces to 0 = A&,(TP const.) = (aAG/&)i,,( TP const.) at equilibrium 
when T and P are constant. Hence i,,( TP const.) = 0, provided aAG/ae # 0. 

If equilibrium states only are traversed as T and P are changed, we have 
likewise 

0 = A&, = (aAG/&)i,, + (aAG/aT)F+ (aAG/ap)P (2) 

Hence ieq # 0 in the general case when aAG/&, aAG/aT and aAG/aP # 0. 
Thus i,, + Zeq( TP const.) in general at a given T and P. 

This difference in reaction rate, i,, - ies( TP const.), is associated with the 
circumstance that the energy exchanged between the system and the sur- 
roundings is different in the two cases. The reactive species are thereby 
differently activated or deactivated in the two cases. 

The system may not in general have time to restore equilibrium when T 
and P vary. Then Ad # 0, according to eqn. (1). The net conversion of 
reacting species is less than that implied by eqn. (2): thus 1 i 1 < 1 i, I. 

Chemical reactions usually involve molecular motion, which is generally 



much slower than vibrational and rotational (librational) processes. The 
latter form the basis of local thermal and mechanical equilibrium [4,5], 
which is thus established faster than reaction equilibrium. Hence, in general, 
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li,lz Ii1 >E’,,(TPconst.) (=0) (3) 

The special case i = i,, requires that the reaction is relatively rapid and 
that F and P are not too high. i = 0 corresponds to a slow reaction. This 
may be due to small concentrations and/or a complicated reaction mecha- 
nism and/or high energy barriers, or else, may imply a low reaction 
probability. (i = 0 corresponds to an infinitely slow reaction, or to reactants 
and products being mirror images of each other.) 

The conclusion is that the reaction rate referred to a given T and P is 
generally not the same when T and P vary as when T and P are constant. 
This presupposes that aAG/& # 0, as already noted. However, according to 
the results of the last section, a similar conclusion applies when i3AG/& = 0. 

The above discussion refers to changes originating in an equilibrium state. 
There is apparently no reason why a similar conclusion should not apply to 
processes out of equilibrium in general. In that case, i # i( TP const.) in 
general for a closed system. 

This result is thus not in accordance with common practice in non-iso- 
thermal reaction kinetics, according to which i is a function of T and P 
only, i.e. the same as in isothermal kinetics. 

Part B 

It is assumed that 

AG=AGe+-RTlnQ=RTlnQ/K (4) 

where K = K(T( t), P(t)) is the thermodynamic equilibrium constant, and 
Q = Q( T( t), P(t), c(t)) the corresponding proper activity quotient in gen- 
eral. From eqn. (4), by differentiation, we obtain 

Ad=Rln(Q/K)p+RTlhQ-RTlhK (9 

where lh Q = S In Q/at, etc. Hence A6(TP const.) = RT lh Q(TP const.), 
and by difference 

in Q = in Q(TP const.) + lh K- (AG/RT*)F 

+ [ AG - A6(TP const.)]/RT (6) 

It is assumed, for simplicity, that the reaction system is thermodynami- 
cally ideal [6]. The activity coefficients on a mole fraction basis are then 
constant (y, = 1) and 

lh _Q = iz(a In Q/i3ni)ai (7) 
i 
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(see Appendix A). With eqns. (6) and (7), this gives 

i=Q(TP~onst.)+(lh K-(AG/RT2)?‘+ ~~A~-A~(~P~onst.)~/~~}) 

/C@ In Q/%)a, (8) 

i( TP const.) corresponds to the isothermal rate expression for a reversible 
reaction. The corresponding differential SC = i 6t is inexact in T and P. 
Since the term in parentheses on the right-hand side of eqn. (8) can 
apparently not be shown to vanish in the general case, one may conclude 
that i # i( TP const.) in general. A simplification of the expression in 
parentheses may be required in practice (see below). 

When equilib~um states only are involved, eqn. (8) reduces to 
I r,=E’,(TPconst.) fhi K/z(a In K/3n,)a,=Ih K,/~(a In .ZC/&z,)a, 

I i 

(9 

since AG, = AG- = Ad,( TP const.) = i,,( TP const.) = 0 in that case. Thus 
i,, f Zeq( TP const.) in general. 

The denominator on the right-hand side of eqn. (9), or (8), may vary 
considerably during reaction, depending on the initial conditions (see e.g. 
eqn. (A7) in Appendix A). It is expected that the ratio as given by eqn. (9) 
will normally reflect this variation, whereas this may not be so in the case of 
eqn. (8) because of the additions dependence on AG, etc. 

Opposing reactions 

The reaction rate will be written, in the usual way, as a sum of two terms 
[7,81, i = C, + r'_, where h+( z 0) is the rate in the forward direction, refer- 
ring to the reaction equation written in the usual way, and i_( < 0) is the 
rate in the . backward direction. Furthermore, lh K = ( AH*/RT*) ?; - 
(AY”/RT)P ( see Appendix A). AH* = HZ- Hy= H_ - H, (ideal solu- 
tion [6]). H, = C, 1 a * t ] Hi I, where H,, (H_,) = partial molar enthalpy of 
the i th participating species on the left- (or right-) hand side of the reaction 
equation as normally written. Similarly, AT/* = VT-- VF= V__ - V+, etc. 
AG f = G_ - G, and aAG/& = (aG_/&) - (aG+/&), etc. Substituting 
these expressions into eqn. (8) and rearranging terms, we obtain 
* 
f+ - i+(TP const.) - [ - ( H,“/RT~)~‘+ (VF/RT)~ + (G+/RT~)~” 

-(C?+/RT) + (6+(TPconst.)/RT)]/x(a In Q/an,)a, 

( . =- c__ -i_(TPconst.)-[+(H?/RT*)~-(I/?,/RT)@ 

-(G_/RT~)F+ (G_/RT) - (d_(TP const.)/RT)] 
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It is assumed that 

F*= [f,(TPr, 2%) + (Gy/RT2)p- (@/RT) + (de,4(TPconst.)/RT)] 

/C@ 1l.l Q/W% Wf 

where f+ = f_ are unspecified functions depending on the particular reac- 
tion (mechanism) in question. First, using this definition of F,, we can 
recover the equilibrium i *- expression obtained directly from eqn. (9) (namely 
eqn. (13) below) because AG * = G + - GT= 0 at equilibrium, in which case 
G It are not needed in the first piace. Secondly, by choosing the proper 
expression for f+ (see below) when the reaction is an elementary kinetic 
step, for which K= k+/k_, we can obtain the correct expression for In k *. 
k, (k_) is the rate constant in the forward (backward) direction. Other 
general restrictions on F* are not known. 

This leads to 

in general. L+(TP con&.) (or L_(TP const.)) corresponds to the isothermal 
rate expression in the forward (or backward) direction. 

For a thermodynamically ideal system, AH, = AV, = 0 and AG f = 
- TAS It = RTC, 1 a kI 1 ln( x f ,/xTi). At equilibrium, 
AG *(TP const.) = 0, so that eqn. (12) reduces to 

AG + = AS f = AG f = 

when only equilibrium states are traversed. Equation (13) may be obtained 
directly from eqn. (9) in a similar way. 

There is apparently no exact way of simp~fying eqn. (12) in the general 
case. One approximate procedure is to ignore the last two terms in parenthe- 
ses in eqn. (12). They are of opposite sign and may generally be relatively 
small. The corresponding approximate form of eqn. (12) is 

i,=bJ~~const.) f [frt-@gmT1)~+ (v~j&?)P- (ASJRT)~] 

/G@ In f&%h 041 

where AS, may also be relatively insignificant in many cases. The corre- 
sponding expression for i, obtained from eqns. (14) or (8), is 

i= I(TP const.)+[lh K- (AG,.GXT~)~]/C(~ III Q,AI+~ (19 

but closer consideration indicates that the latter approximation may gener- 
ally be relatively less satisfactory than eqn. (14). 



If the reaction is an elementary step, K= k+/k_, as noted above. 
Introducing this relationship into eqn. (8) and proceeding as above, we 
eventually obtain 

i,=i,(TPconst.) + [In k,+(AG,/RT*)p- (AGJRT) 

+(AG*(TPconst.)/RT)]/x(a In Q/an,)a, 

where 

16 k+= (Cl In kJaT)f+ (a In k,/LW)i, 

= (AHz*/RT*)+ (AV;*/RT)j 

~f*-(H,“/RT*)~+(~~/RT)P (17) 

using eqn. (12). This identifies f+. AH:* and AVF* are the activation 
enthalpy and volume, respectively. We could then proceed to derive equa- 
tions similar to eqns. (13) and (14). 

PHASE REACTIONS AT CONSTANT COMPOSITION 

When aAG/& = 0, the last term in eqn. (8) becomes a O/O expression, 
because the terms in parenthesis cancel and aAG/& = RTC,(a In Q/ani)a, 
for thermodynamically ideal systems (see Appendix A). c is therefore 
indeterminate in this formulation. A simple example is the one-component 
system where water evaporates slowly from a liquid surface of constant area 
in a steady state close to thermodynamic equilibrium of zero net evapora- 
tion. Interfacial effects are almost constant as long as T and P are constant, 
Thus, although AG (referred to the bulk) is influenced by interfacial effects 
in general, it is practically independent of e in this case. 

(Generally, however, the interfacial area changes with E, and so, therefore, 
will interfacial effects on AG at constant T and P, even when phase 
compositions are constant. Hence AG = AG(T(t), P(t), c(t)) in general. 
Although we may put In Q/K = AG/RT, as before, Q( 6) and K are not 
known.) 

Assume, for simplicity, that the water vapour in the above example is an 
ideal gas. The differential of the corresponding state equation on logarithmic 
form is 

an/n, = -@T/T) + @P/P,) + (SI’-/v) (18) 

where ngr pg and V are the mole number, pressure and volume of the 
vapour, respectively. 

If phase equilibrium exists, this reduces first, using the Clausius-Clapeyron 
equation, to 
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where AH is the heat of vaporization, and then further to 

6n = n,( W/V) (19) 

at constant temperature. The equilibrium state is independent of P’ and ng, 
since K = pg. 

DIRECT MODIFICATION OF ISOTHERMAL REACTION KINETIC RATE EXPRES- 
SION 

By contrast, the isothermal reaction rate is taken to be zero at equi- 
librium, implying that SV= 0 in eqn. (19). This may, for example, be written 
kinetically as a very simple two-term rate equation. Thus 

Yi=k+(T)A-k_(T)p,(T)=O (20) _ 

where A is the interfacial area, and k+(T) (or k_(T)) is the rate constant 
for the vaporization (or condensation) process at T. 

To bring the reaction kinetics description into agreement with the thermo- 
dynamic requirement above, the variables in the rate expression, such as T 

and/or pg in eqn. (20), may be (temporarily) slightly modified, correspond- 
ing to the creation of a small (temporary) disturbance of the equilibrium 
state. 

For example, a sudden volume change SV produces, at constant T, a 
change in pressure 6p(&1= 0), as given by eqn. (18), putting 6n = ST = 0. 

This is followed by a net transfer of substance between the phases, to restore 
equilibrium at T according to eqn. (19). This process may be expressed as 

riSt=Gt(k+A-k_[pg+Sp(6n=O)]) =(sv/v>n, (21) 
where St is the time required to re-establish equilibrium at constant temper- 
ature (reaction time). (The time actually taken to produce 6p( &I = 0) in the 
first place is irrelevant, as long as no net transfer occurs during this time 
element. In a continued process, this time becomes (almost completely) 
subsumed in the reaction time.) Equation (21) reduces to 

at = -(l/k_)[w/Sp(Sn = 0)] = (l/k)(n$p,) = (W-)(WW (22) 

using eqns. (20) and (18), with 6T = 6n = 0, as noted above, along with the 
ideal gas state equation. The net transfer of matter between the two phases 
is associated with a corresponding net heat transfer between the system and 
the surroundings to keep the temperature constant. 

The effect of a small temperature change ST(Gn = 0), i.e. a small thermal 
energy change at T, in addition to the volume change, may be represented as 
fist = &{ k+(T + 6T) - k_(T + ST)[p,(T + ST) + Gp(Sn = 0)]}, where 
p,( T + ST) is different from the equilibrium vapour pressure at T + 6T. 
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The same result as given by eqn. (19), for instance, may then be obtained 
in a different reaction time, provided the original temperature T is finally 
restored. 

Alte~atively, we could restrict the temperature change to the liquid phase 
only, for instance, and then proceed as above. 

There are thus various ways of modifying e.g. eqn. (20) to bring about the 
result of eqn. (19). The reaction time, however, is different in the various 
cases. 

A similar procedure may also be used out of equilibrium. For instance, 
for the spontaneous process at constant temperature, we obtain 

St(k+A - k-p,) = 6 no = ng[ @PO/p,) + wvq (23) 

analogous to eqn. (19). an, is the change in the vapour phase mole number 
which is due to the spontaneous reaction during time element Cit, and 6p, 
and SV, are the co~esponding the~od~a~c changes in pressure and 
volume, respectively {only one of which is free when Sn, is given). pg = 

p? exp( AG/RT), with AG = pg - pl, where ppClj is the chemical potential of 
the vapour (liquid). 

An arbitrary change in pressure and volume at constant temperature 
likewise yields 

St(k+A-k_[p,+Sp(Gn=O)]) =6n=n,[(Sp/p,)+(61//V)] (24 
which is similar to eqn. (21). The further derivation is in principle as before, 
although the results are somewhat more involved. 

This indicates that the method outlined is in principle quite general. The 
corrections are applied to each kinetic term separately. A single-term rate 
equation describing an irreversible reaction may be modified accordingly in 
a similar fashion. The isothermal (isobaric) rate constant k(T) may be 
replaced by k( T + ST) in non-isothermal kinetics, where 6T is (somewhat 
arbitrarily) identified as the actual temperature change in the system during 
St. ST may be taken to be proportional to 25 in reactions involving more 
than one phase at constant composition. For a homogeneous reaction this is 
only approximately true, if thermodynamic requirements are to be fulfilled. 
The proportionality constant may be treated as a trial parameter. More 
exact ST(F) relations may be obtained by comparing with previous equa- 
tions. 

CONCLUSIONS 

According to the results of the present work, the non-isotherms, isobaric 
reaction rate is in general a function of heating rate, besides T and l . It is 
thus distinctly different from the isothermal, isobaric reaction rate. Although 
the difference may be quite small in many cases, the distinction may become 
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increasingly more important-for instance, as the accuracy of experimental 
data improves still further. So far the difference has mostly been overlooked 
in the literature on non-isothermal reaction kinetics. 

APPENDIX A 

The thermodynamic equilibrium constant K is a function of two indepen- 
dent variables only, here taken to be T and P. This requires in general the 
use of activity coefficients yi. An exception is provided by a thermodynami- 
cally ideal system [6] when mole fraction x, is used as a composition 
variable. Then y, = 1. 

It is convenient to write K as a function of n, and y, at the outset. Thus 

K=K(yi, n,, i=1,2, __.) 

Hence 

(= K(TP)) (Al) 

ln K= C(a In k-/a+i,+ x(a In K/ay,)j: 
I I 

y, is a function of T, P and composition. Thus 

+E = ~(a~~/a~~)~~ + (aY~/aT)~+ (aY~/ap)~ 
1 

(A21 

and, since < = ri,/a, is assumed to be independent of i, we obtain 

(a In zc/a+, + (a In fc/ay,)C(ay,/a+2, 1 1 +&a In K/ayi)(ayt/aT) + PC(a In K/ay,)(ay,,iap) 
I I 

Also 

(A3) 

(Ad) 

hi K= (a In K/aT)F+ (a In K;/azJ)r;= (AH*/RT*)~'+ (a in qfap)P‘ 

(A9 

where the last term depends on the choice of standard state in the general 
case [6]. 

As an example, consider 

K= flI(YJ,): 

(mole fraction basis). Then [9] (a In K/aP) = -(aV*/RT) and 

(a In K/an,)a, = (+~,)(l - x,) 2 0 

646) 

(A7) 

where x, = n,/C,n,. 
The sum is over the species in the phase containing the i th component 
(when the system comprises several phases). Also 

(3 ln K/W = (a,/~,) (A8) 
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For an ideal system [6], y, = 1 and, from eqn. (A4), 

hi K=E’,qC(a In K/&ri)a, (A9) 

If, in addition, the system consists of a single phase of volume V= constant 
(as is often nearly true for a single, homogeneous phase), then E, = fii/V = 
a,i/V, and 

lh K= (d,/a,)C(a In K/k,)a, (AlO) 

The expression is more complicated when Y is a variable. 
K( TP) is replaced by the proper quotient of the activities Q(ZR) in 

states out of equilibrium. The equilib~um activities (e.g. y,x,) are then 
replaced by the co~esponding non-equilib~um ones. The corresponding 
expressions for lh Q, etc. are obtained by replacing K by Q in eqns. 
(Al)-(AlO) and i,, by < in eqns. (A4) and (A9). 
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