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ABSTRACT 

General results on the operation of heat-flux calorimeters are obtained from a hereditary 
integral formulation of the calorimeter response. The behaviors of heat-flux calorimeters at 
long time intervals after a thermal event are examined using final value theorems of Laplace 
transforms. Experimental confirmation of the resulting predictions suggests an analytic 
procedure for desmearing or inverting calorimeter signals without the need for specific 
models or computer numerical techniques. Particular solutions are obtained for instantaneous 
heat and heat flow corresponding to an apparatus function of interest in the practice of 

heat-flux calorimetry. 

INTRODUCTION 

Heat-flux calorimeters are non-adiabatic, non-isothermal devices that are 
used to determine the total heat or rate of heating for a process. A 
time-dependent change in temperature or pressure in the calorimeter cell is 
typically measured, the area under which is found to be proportional to the 
total heat liberated or absorbed during the thermal event. However, at 
present there is no mathematical basis for this empirical observation, except 
in the case of the simplest type of heat-flux calorimeter, i.e. the Tian-Calvet 
type VI. 

As well as obtaining the total heat of a process, it is normally desirable to 
invert or ‘desmear’ the temperature-time or pressure-time response curve in 
order to reconstruct the actual heat flow occurring at the sample during the 
process. In calorimetry, this desmearing operation is known as thermogene- 
sis. The actual heat flow of the process in the cell, 0, is often estimated by 
formulating a heat-transfer model for the calorimeter and solving the 
resulting differential equation relating the heat flow at the sample surface to 
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the transient temperature or pressure response curve [2]. Desmearing of the 
response curve to reconstruct the true heating function is then performed 
analytically after the experiment, or electronically using analog computer 
circuitry to operate on the response signal in real time [3]. In the absence of 
a heat-transfer model for the calorimeter, it is thought that desmearing can 
only be accomplished through the use of numerical techniques involving 
Fourier transform or recursion methods (4). 

In this paper some general analytical results obtainable from a hereditary 
integral formulation of heat-flux calorimeter operation [4,5] are briefly 
considered. In particular, we use final-value theorems for Laplace trans- 
forms to examine the behavior of heat-flux calorimeters at long times, i.e. as 
t + co, following a thermal event such as a heat pulse or a step change in 
heating rate. Experimental confirmation of the results of these analyses 
suggests a general mathematical procedure for desmearing or inverting 
calorimeter signals without the need for specific models or computer 
numerical techniques. 

BACKGROUND 

The excellent review of the fundamentals and practice of heat-flux 
calorimetry by Hemminger and Hohne [4] should be consulted for details of 
apparatus construction and operation. Recommended mathematical refer- 
ences include any text on Laplace transforms, in particular Wylie and 
Barrett [6] or Thomson [7]. As calorimeter signals are typically slowly 
varying functions of time having a finite number of maxima and minima, 
they will normally satisfy the necessary conditions for the existence of a 
Laplace transform, i.e. they are piecewise continuous over the time interval 
[0, cc] and of exponential order. The Laplace transform is defined 

f(s) = iwf( t) e-“’ dt (1) 

where f(s) denotes the Laplace transform of a time-dependent function f(t) 
in terms of the transform variable, S. Differentiating both sides of eqn. (1) 

by s 

U(s) 
ds=- J O”tf( t) e-“’ dt 

0 

shows that the derivative of the transformed function, df(s)/ds is the 
Laplace transform of - tf( t). In addition 

s?(s) = kwf’(t) e-“‘dt 

is the Laplace transform of the derivative, f’(t) = df (t)/d t for a time- 
dependent function where f(0) = 0. 



It will also be necessary 
integral, denoted f(t) * g(t) 
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to introduce the convolution (or Faltung) 

f(f) * g(f) = Jbf’t - i%dt) d5 = ~~(~)g(~ - t) dC (4 

In eqn. (4), 5 is the time variable of integration and (t - E) the elapsed time. 

The Laplace transform of the convolution integral denoted, f(t) * g(t), 

can be expressed as the product of the two Laplace-transformed functions, 
f(s) and g(s), according to 

J(s)g(s) = Srn e-“’ 
0 

[ff(t - t)g(t) dt] dt =f(d * g(f) 
0 

(5) 

The following final-value properties will also be useful in the analysis of 
calorimeter signals 

liif(.s) = iaf(f)[ lii ems’] dt = l”r(t) dt (6) 

(8) 

GENERAL RESULTS 

We are now in a position to obtain some general results for heat-flux 
calorimeters. It is assumed that the measured, time-varying calorimeter 
signal, B(t), the actual heat flow in the calorimeter cell, 0 = dQ(t)/dt, and 
the ‘apparatus function’ or kernel function, K(t), are related by the linear 
hereditary integral, or convolution integral [4,5] 

e(t)=/bK(r-t)$ d-i 

where the kernel function depends only on the apparatus and is not 
dependent on sample properties or on any particular thermal history. 

We postulate that eqn. (9) is a sufficiently general governing equation to 
adequately represent all heat-flux calorimeters and proceed to demonstrate 
that, regardless of the form of the kernel function, the heat of a process is 
proportional to the total area under a calorimeter response curve. Taking the 
Laplace transform of eqn. (9) 

-- 
~=SQK 00) 

where, as usual, superscripted bars denote the Laplace-transformed function 
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Fig. 1. Calorimeter response to arbitrary heat pulse. 

and s is the transform variable, and applying the appropriate limit theorems 
(eqns. (6) and (7)) to eqn. (10) 

lii 8(s) = [liz SQ(S)]pili K(s)] 

the final result is 

J Qb) 
0 

??(t) dt = c 

where Q(cc) = Q-r, is the total heat of the process, with 

C= [i@k(t) dt]-’ 

(12) 

(13) 

the thermal capacitance of the calorimeter. Equation (12) states mathemati- 
cally that for a heat-flux calorimeter obeying eqn. (9), the total area under 
the measured response curve, after the baseline is re-established following a 
thermal pulse, is proportional to the total heat of the process, regardless of 
the form of the kernel function. The shaded portions of Fig. 1 demonstrate 
the area1 quantities required to determine the numerical value of the thermal 
capacitance C via a pulsed heating experiment for arbitrary o(t) and e(t) 

histories. 
Alternatively, the value of the kernel-function integral at infinite time can 

be determined from the steady-state calorimeter response to a constant 
heating rate. For a system initially at rest, experiencing a heating history, 
dQ/dt = &u(t) where Q, is a constant heat flow and u(t) is the unit step 
function 

Equation (9) gives 

e(t) = Q,ir45)W - 0 d5 04 
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Fig. 2. Calorimeter response to constant heat flux. 

The Laplace transform of eqn. (14) is 

Applying the appropriate limit theorems to both sides of eqn. (15) as 
previously, the result is 

. 

fqcc) = $y (16) 

with C defined as in eqn. (13). Equation (16) shows that the steady-state 
calorimeter response at infinite time 8(cc) is proportional to the constant 
heat-flow rate in the calorimeter cell. Figure 2 demonstrates a typical 
heat-flux calorimeter response to step-function, constant heating with the 
associated relevant quantities. 

An average time constant or response time for the calorimeter 7 can be 
defined as the mathematical expectation (or mean value) of the continuous 
time variable if the apparatus or kernel function K(t) is considered as a 
density function such that the usual definition of the mean applies 

J 

a, 
K(t) dt 

7s em 

J 
K(t) dt 

0 

07) 

General results for arbitrary kernel functions are obtained by differentiat- 
ing the Laplace transform of eqn. (9) by s 

de -do --dK 
-=Kds+Qd, ds 

Using eqn. (2) and the final-value theorems, eqn. (18) becomes 

(18) 

l%l(t) dt = lmK( t) dtjo?& t) dt + imtK(t) dtl?j( t) dt (19) 
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which, together with eqn. (12) allows the mean response time to be written 
as 

Expressions for higher moments of the response-time distribution can be 
obtained using the same limit theorems applied to successively higher 
derivatives of eqn. (8). 

For a single square-wave heat pulse beginning at t = 0, having amplitude 
& and duration t,, the last term on the right-hand-side of eqn. (20) can be 
solved analytically by making the substitution Q(t) = &[ u( t) - u( t - t,)], 

with the result that 

/ 

03 

?f= 0 
to(t) dt t 

-4 

/ 
?2(t) dt 

2 

0 

(21) 

which is an expression for the mean time constant of a calorimeter having an 
arbitrary apparatus (or kernel) function in terms of integrals of the response 
curve and its time product. 

A means for testing the validity of a linear hereditary integral formulation 
of heat-flux calorimeter operation is provided by the above results. Accord- 
ing to eqns. (12) and (16), a calorimeter in which the response to heat flow is 
linear should yield the same value for the thermal capacitance, C, in both 
pulsed and constant rate heating experiments. 

EXPERIMENTAL VERIFICATION 

Experiments were performed at 25 o C using a new version of a heat-flux 
calorimeter originally designed to measure the heat of solid deformation [5]. 
The instrument senses heat flow between a deforming sample and the 
isothermal cell wall as a pressure change in the surrounding gas at constant 
(differential) volume. Heat generation within the cylindrical cell (25 cm 
long x 2.2 cm diameter) was accomplished using electrical heating of 5, 10, 
and 15 cm-long Stableohm 650 resistance wires (California Fine Wire) 
having a diameter of 0.320 mm and a resistivity of 13.517 0 m-‘. A Keithley 
220 Programmable Current Source provided a constant electrical current I 
from which the heat flow in the calorimeter cell is calculated as &, = 12R 
from the measured wire resistance R. 

Pulsed-heating calibration experiments were conducted using pro- 
grammed square-wave current pulses of various duration t, to produce heat 
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Fig. 3. Pressure-time integral versus total heat for pulsed heating experiments. 

pulses Qr = &to ranging from 1 to 3200 mJ within the calorimeter cell. The 
gas-pressure signal output from the differential pressure transducer Al’(t) 
was integrated electronically using a digital recorder over a time period 
sufficiently long to allow reestablishment of the baseline following the pulse, 
as indicated schematically in Fig. 1. The thermal capacitance C was calcu- 
lated according to eqn. (12), with 0(t) = AP( t) for this particular calorime- 
ter, i.e. 

C= 
QT 

(24 
/ mAP(t) dt 

0 

Results of the pulsed-heating experiments are shown in Fig. 3 for the 
three lengths of resistance wire. An average thermal capacitance of C = 300 
* 11 pw Pa-’ was calculated from all of the data. Linear behavior is 
demonstrated by the strict proportionality between the pressure-time in- 
tegral and the total heat delivered during the pulse, as indicated by the unit 
log-log slope over the entire 3 + decade range covered in these experiments. 

Experiments were also conducted in which the steady-state pressure 
AP(oe) in the calorimeter cell was measured after equilibration at various 
constant heating rates Q, ranging from 0.1 to 20 mw. Data for the 
steady-state pressure at constant heating rate for the three wire lengths are 
shown in Fig. 4. Again, strict proportionality implies linear response over 
three decades of heating rate. The thermal capacitance was found to be 
C=299f6 pw Pa-’ by averaging the data over the range of heating rates 
investigated in these experiments, using eqn. (16) with the appropriate 
substitution, e(t) = AP( t) 

00 
‘= AP(co) (23) 

The predicted agreement between thermal capacitance values obtained by 
pulsed heating and steady-state heating is confirmed in these experiments. 
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Fig. 4. Steady-state pressure versus heating rate for constant heat flux. 

Moreover, eqn. (21) has been shown to yield mean response-time values in 
excellent agreement with those obtained by least-squares fitting of the 
response curve for step-function heating to a single exponential [8]. These 
results suggest that a linear hereditary integral provides a general representa- 
tion of heat-flux calorimeters independent of any assumptions about the 
path by which heat is transferred into or out of the calorimetric cell. A 
mathematical framework for inverting or ‘desmearing’ heat-flux calorimeter 
signals, without reliance on specific models, is thus established. 

THERMOGENESIS 

It follows from the convolution theorem that it is possible to determine 
the response of a system to a general excitation if the response to a unit step 
function is known. Reconstruction of the actual heat flow in the calorimeter 
cell from the smeared response curve is therefore possible if the calorimeter 
response to a step-change in heat flow is measured. Typically, a transient 
temperature- time or pressure- time response to an instantaneously imposed 
constant heat-flow is obtained experimentally, as depicted in the 8-t curve 

in Fig. 2. The rising (or falling) transient is then fitted with as many 
exponentials, or functions of exponential order, as is necessary to obtain the 
desired level of accuracy. This constitutes an empirical evaluation of the 
kernel function. Based on experimental evidence it is found that a finite sum 
of exponentials will provide a sufficiently accurate description of the tran- 
sient behavior, so that a useful kernel function is of the form 

(24) 

where ci and 7i are the thermal capacitance and time constant of the ith 
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transfer element, respectively. It then follows from eqn. (13) that 

1 ““1 -= /c c 0 

- e-t/T dt= k ; 
;=I ci7i j=l ’ 

(25) 

A familiar result is obtained if it is found that the transient calorimeter- 
response can be described by a single exponential. In this case, n = 1 in eqn. 
(24) and the kernel function or apparatus function is simply 

K(t) = & e-“’ (26) 

Substituting eqn. (26) into eqn. (9) 

and taking Laplace transforms 

or 

(27) 

which is inverse-transformed to give an equation for the instantaneous heat 
of the calorimetric process up to time t 

Q(t) = CJCbe(E) d5 + C+) (30) 

Differentiation of eqn. (30) results in an expression for the instantaneous 
heat flow in the cell in terms of the measured 8( t ) 

Q(t) =03(t) + c’q 
which is familiar as the Tian equation [l]. Consequently, we find that the 
Tian equation is simply a particular solution of the more general hereditary 
integral formulation. 

If it has been determined that the Tian equation provides a sufficiently 
accurate means of desmearing the response curve, eqn. (21) can be used to 
obtain the average time constant of the apparatus for use in eqns. (30) and 
(31). It is easily shown that for a single exponential kernel function (eqn. 
(26)) eqn. (17) yields the expected result that 7 = 7. 

CONCLUSIONS 

A linear hereditary integral formulation of heat-flux calorimeter response 
provides a mathematical framework for obtaining general results on long- 
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time behavior. Agreement between experimental data and predictions for 
pulsed and constant heating-rate thermal histories confirm the general 
validity of the convolution integral or linear hereditary integral approach to 
the analysis of heat-flux calorimeter signals. 
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