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ABSTRACT 

A method for the ab initio evaluation of solvation and solvent transfer Gibbs energies is 

presented and illustrated with some results. 
The method provides for the complete determination of AG. The results, however, show 

that for many purposes a less detailed description is sufficient and the work of computation 
can be drastically reduced. 

The model is extended to the construction of free energy surfaces describing the change in 
the energy (or chemical potential) for a solute near the boundary between two liquid phases. 
The results agree with chemical intuition. 

INTRODUCTION 

The activity of our group in the elaboration of theoretical and computa- 
tional models for the study of chemical processes in solutions represents a 
natural extension of earlier theoretical studies on the nature and properties 
of molecular interactions involving a limited number of partners. Our 
approach to the study of solutions is influenced by our previous history and 
places more emphasis on the accurate description of the microscopic, 
submolecular aspects of the problem than on the elaboration of macro- 
scopic, large-scale, empirical models and rules. 

Because many aspects of the properties of chemical systems in a fluid 
phase that we have investigated, starting from our initial quantum-mechani- 
cal model for solvent effects [l], lie outside the field of interest of the present 
journal (for a recent synopsis of our work see ref. 2), we shall here deal 
solely with our elaboration for the evaluation of the free energy change of a 
system due to a change in the environment. More specifically, we shall only 
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consider solvation free energies, A solG *, and solvent transfer free energies, 
A trf G * for infinitely diluted solutions. 

THE METHOD 

Our quantum mechanical approach relies on the solution of a Schroe- 
dinger equation, in which the molecular Hamiltonian of the solute M (i.e., 
Hz) is accompanied by an effective interaction operator, Fnt, accounting 
for the interactions with the surrounding medium. Further terms necessary 
for the evaluation of G according to statistical thermodynamics are obtained 
either via the same Hamiltonian, or with models (at the molecular level) of 
general use in the statistical treatment of liquids. 

Solution of the Schroedinger equation 

(Hz + &,)‘I! = E”P’ (1) 

presents different possibilities that depend on the application sought. The 
solvation free energy for one mole of M may be written in the following 
form 

A,,,G* = W(M/S) - RT In - 
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the first term of which represents the interaction energy between solute M 
and solvent S, and the remaining terms express the contributions of motion 
through the appropriate molecular partition functions. 

We shall adopt the Ben-Naim approach [3] because it is well suited for the 
application considered at the end of the paper. 

We are firstly interested in a more precise definition of W(M/S). This 
term may be divided into electrostatic, dispersion and repulsion contribu- 
tions. All the terms may be evaluated according to quantum mechanics, but 
it is convenient to adopt different approaches. 

The electrostatic contribution includes the difference in the reversible 
electrical work necessary to assemble the electrical subunits of M (electrons 
and nuclei) in vacua and in solution. When the corresponding part of V,,,, 
eqn. (1) uses a continuous description of the thermally averaged distribution 
of solvent molecules around M, the electrostatic contribution also contains 
the work necessary to bring the continuous distribution into the opportune 
polarisation state. If limited to this term, vnt may be assimilated to a 
generalisation of the solvent reaction potential used in semi-classical theories 
of solvation (V,) [4]. The electrostatic contribution is obtained as the 
difference in the analogous quantities computed in solution and in vacua 

AG,, = E’ - :(‘l”(L+“) - E* (3) 

E’ (total energy, including nuclear contributions), q and V, come from 
eqn. (1) and E* (including nuclear contributions) is the solution of the 
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equation with Vint = 0. More details on the derivation of eqn. (3) are given in 
earlier papers [1,2,5]. We stress here the fact that both E’ and E * have the 
status of a free energy contribution. 

For practical applications it is convenient, even if not necessary, to 
maintain the level of calculation within the Hartree-Fock level. In the 
following examples, therefore, Hz in eqn. (1) is replaced by the Fock 

operator F$, with the usual recipes for the calculation of E’ and E *. 
The Hartree-Fock approximation is not sufficient for the evaluation of 

dispersion contributions. Instead of using a full Hamiltonian, with accurate 
description of the solute M as well as of the solvent molecules, we have 
recently elaborated an efficient algorithm which makes use of atomic (or 
group) contributions to the dispersion energy [6]. The energy obtained as an 
output of the calculations has again the status of a free energy contribution, 

Gdisp. 

Repulsion effects are the cause of the formation of the appropriate empty 
space where M is situated in the bulk of the solvent; they also represent a 
contribution to the solute-solvent interaction energy. The calculation via 
quantum mechanics of the first repulsion contribution is a formidable task 
which can be approximated by semi-classical molecular dynamics simula- 
tions (still very expensive). A simpler method is offered by the scaled 
particle theory [7], and we shall adopt the expression given by Pierotti [8] to 
evaluate the free energy for the formation of a cavity of appropriate size, 
G,,,. The second repulsion contribution may be evaluated with the approach 
used for the dispersion contributions, again using group contributions [9]. 

Summing up, the solute-solvent interaction term may be decomposed in 
the following way 

W(M/S) = AGe, + Gdisp + Grep + Gcav (4 

with appropriate computational algorithms for each term. An important and 
characterising feature of the computational procedure outlined is the reduc- 
tion of all the single terms of eqn. (4) to contributions defined on the surface 
of M, a surface computed with an original algorithm [lO,ll] which is more 
effective than those available in the literature. Reduction of solvent interac- 
tion to molecular surface contributions constitutes an interesting bridge 
between calculation of a single physical property (as here for Aso,G*) and 
the extremely detailed information offered by quantum calculation. The 
examination of contributions on the surface enables the researcher to set up 
new correlations between physical properties of different material systems 
via pattern recognition and image processing. 

The remaining terms of A,,,G*, eqn. (2), are treated with the normal 
methods of statistical mechanics. 

The partition function, qvib, in the gas phase as well as in solution can be 
evaluated via quantum mechanical calculation (for the evaluation of vibra- 
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tional frequencies in solution with our approach see ref. 12). The calcula- 
tions are relatively costly, especially for solutes of large dimensions. 

Evaluation of the partition function for rotational motions in solution 
makes use of empirical values for the potential forbidding free rotation: we 
primarily direct our attention to the strength of local interaction between 
solute and solvent molecules (especially hydrogen bonds), following a treat- 
ment similar to that outlined by Ntmethy and Scheraga [13]. 

The term related to the momentum partition function gives rise to the 
liberation free energy, in the Ben-Naim terminology. Given the temperature 
and solute density in the liquid, this quantity is independent of the proper- 
ties of the surrounding medium. 

The method described, with some details for evaluation of the free energy 
changes, can also be adapted, with minor modifications and a few additional 
calculations, for the corresponding enthalpy changes. By exploiting the 
Gibbs-Helmholtz equation, the derivative of G with respect to T is divided 
into separate contributions, each evaluated with appropriate partial deriva- 
tives. Where convenient, use is also made of experimental values. Some 
details are given in refs. 1 and 14. The method seems to work, but we have 
so far paid less attention to the separate evaluation of enthalpy and entropy. 

ESTIMATES OF SOLVATION FREE ENERGIES 

Each component of A,,,G * is subject to uncertainties and errors of its 
own. The physical model, the mathematical algorithm and the parameters 
used in the calculation are approximate and are all possible sources of 
errors. Unfortunately, information on the single components into which we 
have divided AsolGe cannot be extracted from the direct experimental data. 
The checks we have performed, and are still performing, are based on the 
congruence of the final results over a wide set of properties (solvation 
energies, spectral data, chemical processes, equilibrium geometry in solution). 
Discussion of this checking must be confined here to the presentation of a 
few results, which may be of general interest. 

SOLUTES AT FIXED GEOMETRY 

The quality of the basis set employed in the evaluation of AG,, has a 
remarkable influence on the quality of the results. Figure 1 shows the results 
for the evaluation of A,,,G* (water at 298.15 K) using eqn. (2) for a small 
set of organic solutes containing oxygen (alcohols, aldehydes, ketones, ethers 
and esters) with different basis sets of common use in quantum mechanical 
calculations. The correlation between computed and experimental values is 
acceptable for all basis sets; but there are clear hints that more accurate 
calculations give better agreement with experiment. 
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Fig. 1. Comparison of the computed and experimental values of AsolG* (solvent water, 
T = 298.15 K) for a restricted specimen of small molecules. Each graph refers to a different 
basis set. Linear correlation expressions and regression coefficients are reported in the graphs 
(values in kJ mol-‘). The dependence of the results on the basis set is noticeable, but basis 
sets of good quality give satisfactory results. The data are taken from ref. 2. 
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A tentative conclusion, which has so far passed several tests, is rather 
encouraging: as already stated, the components of AsolGe most subjected to 
arbitrary assumptions in the calculations are those related to the evaluation 
of - RT In q,,,(M). In several sets of related compounds there is a good 
correlation between AG,,, eqn. (3), and A,,G*, eqn. (2). The solution of 
some simple amides in water (298.15 K) is illustrated in Fig. 2. The quality 
of the computed values of AsolG* with respect to the experimental ones is 
comparable to those shown in Fig. 1 (basis set 6.31 G*). 

The method seems applicable to water as well as to non-polar solvents. 
Application to the evaluation of free energy of transfer (and then of the 
partition coefficients) is under way, with encouraging results. Figure 3 
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Fig. 2. Comparison of computed AG,, and ASo,G* values for some amides. Calculations done 
with the 6-31G* basis set. 

compares the experimental and computed values for At,G (water + p- 

toluene) for a set of linear amines C,H,,+,NH,. The computed values refer 
to the AG,, component only @TO-4G calculations) [15]. 

These few examples suffice to show that ab initio low-cost methods (the 
computational times are smaller by a factor of lo3 or lo4 than those 
necessary for computer simulations) allow reasonable appreciation of solva- 
tion free energies for neutral solutes in various solvents. 
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Fig. 3. Comparison of the calculated and experimental values for the water AtrfG* (water + 
p-toluene, T = 298.15 K) for some linear amines. Data from ref. 15. 
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CHANGES IN THE GEOMETRY OF THE SOLUTE 

A comparison of AG,, and AhydG* values for a set of different tautomers 
related to the molecular skeleton given in Scheme 1 is made in Fig. 4. 

c=o 
C=NH 

Scheme 1. 

The agreement between the two sets of computed values is good, as in the 
preceding examples. To the best of our knowledge, there are no reliable 
estimates of the experimental A hydG* for these compounds. But the experi- 
mental estimates of the relative percentage of the tautomers in solution, 
when available [16], agree with the computed ratios within 2-3%. More 
detailed experimental estimates are available for the neutral-zwitterion 
tautomeric equilibrium in solution of glycine; in this case we also present 
estimates of AH and T AS (see Table 1). 

For these evaluations, the value of A,,,G must be accompanied by the 
changes in the in vacua energy, or, to be more precise, by the changes of free 
energy in vacua due to changes in the internal geometry. 

These considerations justify extension of the concept of free energy 
commonly used in thermodynamics to the concept of a free energy hyper- 
surface in the space defined by the nuclear coordinates of M. Justifications 
and a precise definition of this concept may be found, for example, in a 
review paper by Laidler and Polanyi [20]. Free energy hypersurfaces may be 
defined in the following way 

GS”(M;R) = Gvac(M;R) + A_tG(M;R) (5) 

Y-. 10.475 + 4.297~ 

R L 0.99 

-10 -6 -6 -. -2 0 

A SC& 
Fig. 4. Comparison of computed AC,, and A,,G* values for a set of tautomers related to the 
general formula given in scheme 1. The AC,, values will be also employed in ref. 26. 
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TABLE 1 

Prospect of some thermodynamic quantities for processes involving tautomeric changes 
between the neutral (NT) and the zwitterionic (ZW) form of glycine (kJ mol-‘) 

Quantity 

AG 
AH 
- TAS 

(NT) (g) -, (ZW) (aq) (NT) (as) -, (ZW) (as) 

Computed a Experimental b Computed a Experimental ’ 

- 69.0 - - 27.2 - 32.2 
-81.6 - 80.3 - 37.2 -41.4 

12.6 - 10.0 9.2 

a The calculations refer only to electrostatic contributions. Values taken in part from 
Bonaccorsi et al. [17] and in part from unpublished calculations. 

b Estimate provided by Gaffney et al. [18]. 
’ Estimated provided by Haberfield [19]. 

which indicates the nuclear coordinates (R) on which the single terms 
depend. Some additional remarks on the thermodynamical status of eqn. (5) 
may be found in ref. 21. The use of eqn. (5) for the determination of relative 
stabilities of conformers, especially of large molecules, is examined in detail 
in refs. 22 and 23. 

SOLVATION ENERGY AT A LIQUID PHASE SEPARATION 

While the concept of free energy surface in the space of the nuclear 
coordinates of the molecule is now regularly used in molecular sciences, 
other phenomena require further extension of the concept. When one passes 
from isotropic solutions to more complex systems where there are fields (it is 
not necessary to specify here the origin and nature of the field) that have an 
effect on W(M/S) depending on the position of M in the Euclidean space, 
Aso,G* also depends on this position. The definition of Laidler and Polanyi 
already quoted can also be applied to this case. Ben-Naim’s definition of 
starred thermodynamics quantities, related to the insertion of the solute at a 
fixed, preselected, point of the solution, may be of some use. The “liberation 
free energy” assumes a different meaning in the cases considered here and 
depends on the problem and the model under examination. 

Let us consider the case of two immiscible liquids, separated by a flat 
infinite boundary. Computer simulations indicate that the effect of the 
boundary is limited to a layer with a depth of approximately two molecular 
diameters (for the water-benzene system see Linse [24]). We found similar 
effects on Aso,G* (M;z,o) for solutes, M, near the water-benzene surface; 
z and o are the distance and orientation of M with respect to the surface. 
Figure 5 reports the AG,,( z, 8) values for C,H,NH, (only rotation, 8, which 
maintains the main inertia axis in a fixed plane normal to the separation 
boundary). The values of AG,, at large positive and negative z values 
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Fig. 5. Map for AG,, (M;z,B) for ethylamine in the water-benzene system (T= 298.15 K). 
The separation surface is put at z = 0. The benzene is in the region with positive z values. 
The positions on the map refer to the centre of mass of the solute. The rotation axis B is 
perpendicular to the separation surface. The curves are spaced by 2.5 kJ mol-‘. Calculations 
were performed with the 4-31G basis set. 

correspond to the AG,,(M) values in the bulk benzene and water, respec- 
tively. There is a propensity for the solute molecule (we are considering 
infinitely dilute solutions) to stay in the proximity of the boundary on the 
water side. 

A final computer experiment is presented in Fig. 6. It concerns 

CnHZn+l NH, molecules with their hydrocarbon tails in the extended confor- 
mation, allowing motion only along the z coordinate. The minima of these 
sections of the A,,,G* (M; z,w ) surface correspond to a buoyancy condition, 

k J moi’ 
I 

4Q- 

0 20 40 60 80 %S 

Fig. 6. Plots of AG,, (z, 0 = 0) for the passage of some linear amines C,,H2,+,NH2 (n = 1, 2, 
3, 4 or 5) from benzene to water (T= 298.15 K) with respect to the % of the molecular 
surface, S, in contact with water. STO-4G calculations from ref. 15. 
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with the polar head in water and the hydrocarbon tail in benzene. This effect 
is familiar, at the macroscopic level, to those working on liquid interfaces. 
Different buoyancy conditions have been found for other classes of com- 
pounds, while for hydrocarbon solutes, there is an engulfing process (for the 
definition of engulfing, see, for example, Israelachvili [25], and ref. 15 for 
our computed data). 

As stated in the introduction, with these last examples we are shifting 
from the field of classic thermodynamics of liquid solution to a less 
well-defined field, where topics of equilibrium thermodynamics are mixed 
with static and dynamic considerations at the molecular level: the underly- 
ing unity of the phenomena occurring in the material world makes it 
sometimes necessary to explore unitary approaches in which different meth- 
ods are combined. 
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