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ABSTRACT 

The performance of parameter-estimation methods applied to the modelling of experimen- 
tal binary and ternary excess enthalpy data, namely classical or orthogonal regression, has 
been compared. For correlation of binary data, the Redlich-Kister equation was used. 

Ternary data were correlated by two equations: Redlich-Kister or Jones. The data for the 
system acetone-methanol-chloroform were used as an example. It was demonstrated that 
these methods are almost equivalent. 

INTRODUCTION 

The heat of mixing (excess enthalpy) is an important property of a liquid 
mixture. Besides representing the energetic effects directly connected to the 
interactions between different molecules, it is important for the description 
of the thermodynamic properties of phases. 

From a practical point of view, the knowledge of the dependence of the 
excess enthalpy on concentration and temperature is most important. It 
enables prediction of the temperature dependence of the Gibbs energy. For 
this reason, the enthalpy of mixing as a function of concentration at 
constant temperature is widely measured. 

The task of this paper is to compare estimation methods and correlating 
equations used for descriptions of isothermal multicomponent HE data. As 
an example, the system acetone-methanol-chloroform was chosen because 
of its complexity. This system represents all possible behaviours of the heat 
of mixing as a function of composition of a binary mixture: acetone-metha- 
nol has positive values of HE, acetone-chloroform has negative values and 
methanol-chloroform has both negative and positive values (S-shaped). 
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MODEL EQUATION 

The excess enthalpy of an N-component mixture (HE) can be represented 
as a function of concentration by a general formula 

N-l N N-2 N-l N 

HE= c c h;.+ c c c hE,+... 
i=l j=i+l i=l j=i+l k=j+l 

where h:. are binary terms depending on the concentration of component i 
in the mixture of components i and j, and on temperature and h:k are 
ternary terms depending on the concentrations of components i and j in the 
mixture of components i, j and k, and on temperature. 

It is very rare to have a complete set of experimental HE data for a 
quaternary mixture. Due to the lack of experimental data representing the 
temperature dependence of HE, all data were treated as being isothermal 
and temperature independent. A complete set would include all data sets of 
all possible binary, ternary and quaternary mixtures forming a quaternary 
system. A complete five-component system is not available at all at present. 
Due to the lack of multicomponent data, the properties of a mixture can 
only be predicted from binary data alone. In such a case, eqn. (1) reduces to 

N-l N 

H;=c chfj 
i=l j=i+l 

(2) 

Due to the lack of experimental information, this investigation is limited 
to ternary systems only. For such systems, eqn. (1) reduces to the form 

(3) 
i=l j=i+l 

For the prediction of HE by means of eqn. (2), suitable equations 
representing binary (h:) data are necessary, The present paper assesses the 
capability of different equations to represent multicomponent data. The 
Redlich-Kister equation [l] has been proved to be suitable for the represen- 
tation of binary excess enthalpy data [2,3]. Two properties of this equation 
are compared: the ability to represent binary data; and the suitability for the 
prediction of ternary data by means of eqn. (2). 

The Redlich-Kister equation for a binary system has the form 

h; = xixj c AijL(xi - x~)~-’ 
L=l 

where AijL are adjustable parameters for a binary mixture of components i 
and j and mii is the number of adjustable parameters for a binary mixture 
of components i and j. 
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The predictive ability of eqn. (2) was compared with the correlation of all 
available data by eqn. (3). The term h& reflecting the ternary interactions, 
was introduced in eqn. (3) in two forms 

2 3 

h$3 = ~1~2x3 C x Bijx;‘x: (5) 
i=() j=o 

and 

i=O j=O k=O 

(k f 2,4f (6) 

where B and D are adjustable parameters. 
Equation (5) with 10 adjustable parameters corresponds exactly to the 

equation proposed by Morris et al. [4] 

G3 = x1x2xI( B, + B,x, + B,x, + B,x; + B,x; + B5xix2 + &xl -t B,x; 

-I- B,x;x, -t- B,x,x;) m 

Equation (6) corresponds exactly to the equation proposed by Jones et al. 

[51 

EXTERMINATION OF PARAMETERS 

In the computation procedure, parameters were treated as independent of 
temperature. The regression procedure for obtaining the numerical values of 
parameters, with the use of A4 experimental data sets, represents a non-lin- 
ear problem solved by minimisation of the sum of squares of the differences 
between the measured and calculated values of the therm~yna~c variables 

(x X,“‘, XN, HZ,). 
In general, the models used can be represented by the formula 

Y=f( X, C) 

with: 

Y= (~9.*.,Y,,) 

(9) 

X=X(X,,..., XNX, GVX+1~“.,G/X+NU) 

and 

c= (c,,.*.,c,) 

where Y,,..., YNy are NY dependent variables; X1,. . . , X,, are NX error- 
free independent variables; UN,+ i, . . . , UN,+,, are NU dependent variables, 
subject to errors; and C,, . . . , Cm are m adjustable parameters. 
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For the reduction of heat of mixing data for a binary mixture when mole 
fractions are used as concentration variables, the number of variables 
reduces to one dependent (concentration) and one independent (heat of 
mixing). For a ternary mixture there are two independent variables, both 
representing concentration. The composition of liquid phase is treated as an 
independent variable and the heat of mixing as a dependent one. For the 
data reduction, two previously described regression methods, “classical” and 

“orthogonal”, were used [6]. The following equations were used for de- 
termining the objective functions. 

Classical regression 

Minimisation of the function S(C) 

where YL,y = fk( XfrJ, . . . , XF$, j, C). 

Orthogonal regression 

Minimisation of the function S( X, C) 

wkj, ukj>,o 01) 

where 

ulj = l/~~~~,,) and wi,j = l/cr:y ) ( weighting factors), u2 is the variance of the 
measured properties, it4 is the number of experimental data points and vi 
are hypothetical true values of the variables. 

In “classical regression”, all independent variables X (T, temperature, 
and x, composition) are treated as error free. In the orthogonal regression, 
temperature is treated as error free and composition is subject to experimen- 
tal errors. Because of this, temperature does not appear in the equations 
used. The list of variables and objective functions used in orthogonal 
regression procedures is given in Table 1. 

These equations were used either for binary data only or for sets consist- 
ing of binary and ternary data. The correlation results obtained for a ternary 
mixture by means of both methods were compared to those obtained by 
reducing binary data only and predicting ternary HE by means of eqn. (2). 

For the investigations, the ternary mixture of acetone with methanol and 
chloroform was chosen because the measurements have a high accuracy and 
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TABLE 1 

Dependent and independent variables used in the orthogonal regression procedure 

Number of 
components 

Binary 

Ternary 

Binary Hi7 
and ternary 

H1% 

T-e 
of data 

H,E, 

Hl53 

HE 
+ H,; 
+G 
+ 4% 

Variables 

Independent 

W,~...,G/) 
or(-&..., X,,) 

Xl 

Xl, x2 

X1 
Xl 
x2 

Xl, x2 

Dependent 

(Yl,...,YNY) 

HE NY=1 

HE NY=I 

HIE NY=4 

HE 
fG 

ffl% 

there are a large number of experimental points. The three constituent 
binary systems represent three different types of HE versus composition 
curves: negative values of HE (acetone-chloroform); positive values of HE 
(acetone-methanol); and S-shaped values of HE (chloroform-methanol). 

The computed results are reported in Tables 2-8 below. The following 
formula was used to represent the mean absolute deviations for all depen- 
dent and independent variables 

with 2 E (HE, x1, x2) for the orthogonal regression and 2 = HE for the 
classical regression. 

A more useful quantity for the comparison of models is the standard 
deviation given by the following equation 

s( HE)(J mol-‘) = E ( HECexp) - NWcaic))2/( M - m) 1 
l/2 

(13) 
i=l 

This value approximates the overall variance of errors. 
The number of adjustable parameters was controlled by a statistical 

criterion (Fisher test) with a given confidence level ( cx = 0.05). The F-test 
checks the computed ratio $/s~ (3; > s,‘) against a critical value Fi _,( p, v), 
which has the F-distribution with y and v degrees of freedom, and (Y is the 
confidence level. In addition, the confidence intervals of parameters for the 
classical regression were calculated analogously, according to Marquardt 
and Siam [7]. The confidence intervals, based on linearisation, indicate 
whether the parameters can be interpreted at all. For non-significant param- 
eters the absolute value of the parameter is smaller than the confidence 
interval for a given confidence level. 
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DISCUSSION AND CONCLUSIONS 

It is well known [2,3] that of the descriptions of systems exhibiting 
complex heats of mixing the most suitable are the polynomial type of 
equations, for example Redlich-Kister. To provide an adequate description 
of the system investigated, it is necessary to use six parameters in the case of 
a binary system with positive-negative interactions, three parameters in the 
case of a system with positive HE values and four parameters in the case of 
a system with negative HE values, as can be seen in Tables 2 and 3. The 
results of correlation for binary data are independent of the estimation 
method used: the values of the parameters are statistically the same (see 
Tables 3 and 4). Table 4 also reports the standard errors of correlations. 

Prediction of the excess enthalpy of a ternary system using eqn. (2) for the 
corresponding binary systems is possible with a mean absolute deviation 
from experimental values of 40 J mol-‘. The results are the same irrespec- 
tive of whether the parameter values are obtained from classical or from 
orthogonal regression. The results of computations show that for the repre- 
sentation of a complex ternary system with constituent binaries exhibiting 
negative, positive and negative-positive (S-shaped) HE values, a term 
representing ternary interactions is necessary. 

TABLE 2 

Comparison of the efficiency of the Redlich-Rister equation with different numbers of 
parameters for binary systems 

Number of Number of Standard Maximum Number Comparison 

R-K experimen- deviation deviation of sign of models 

parameters tal points 8(HE) max 1 AHE 1 changes (F-test) a 

m M (J mall’) (J mol-‘) 

Acetone-methanol 
2 20 4.95 8.9 5 + 
3 20 0.64 0.9 11 + 
4 20 0.65 0.9 11 = 

Acetone-chloroform 
3 17 9.08 12.3 3 + 
4 17 2.23 4.5 4 + 
5 17 1.70 3.3 7 = 

Chloroform-methanol 
3 36 34.41 83.8 3 + 
4 36 19.91 42.2 4 + 
5 36 7.20 18.0 9 + 
6 36 4.54 11.1 20 + 
7 36 4.24 10.0 20 = 

a + , Rejection of the null hypothesis (second model is better then the first one); = , models 
are equivalent. 
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TABLE 3 

Correlation parameters in eqn. (4) for binary systems (i-j) with their standard deviations 
and their lOO(1 - a)% confidence intervals (a = 0.05) for the classical regression procedure 

Types of 
parameters 

A 
1JL 

Parameter 
value and 

standard 
deviation 

Confidence 
interval 

Parameter 
value and 
standard 
deviation 

Confidence 
interval 

Acetone (1)-chloroform (2) 
R-K with 4 parameters 

A 121 - 7006.0 f 38.7 138.0 
A 122 1869.0 + 15.5 55.4 
A 123 737.4k 18.0 64.0 
A 124 - 570.6 k 38.5 137.3 
A 

125 
_ - 

Acetone (1)-methanol(3) 
R-K with 3 parameters 

A 131 3067.6 + 1.0 3.1 
A 132 427.6+ 2.4 7.5 
A 133 174.7+ 5.3 16.5 
A 

134 
_ - 

Chloroform (2)-methanol(3) 
R-K with 6 parameters 

A23l 169.9+ 7.1 26.8 
A232 4690.9 + 34.8 132.5 
A233 128.8 + 71.8 273.8 
A 234 809.5 + 200 763.3 
A235 2749.1+ 119 455.1 
A 236 1700.9 k 245 936.3 
A 

237 
- - 

R-K with 5 parameters 

- 7000.5 k 34.2 11.8 
1870.2+ 11.9 46.8 

633.3 f 35.2 138.9 
- 569.8 f 29.4 116.0 

185.5 + 57.9 228.3 

R-K with 4 parameters 

3067.4 + 1.1 3.9 
426.5 f 4.2 14.7 
175.2+ 5.6 19.5 

3.6+ 11.3 39.2 

R-K with 7 parameters 

162.3+ 7.4 29.9 
4715.1+ 34.1 138.4 

403.6 f 136 553.5 
708.6 f 192 779.1 

1569.3 f 522 2118.2 
1776.9 _t 232 940.1 
1157.6 * 501 2030.3 

The accuracy of the representation of ternary interactions by the Redlich- 
Kister and Jones equations is similar (Tables 5 and 6), leading to almost 
identical results. In both cases three ternary terms are sufficient for the 
representation of experimental data with the accuracy of the original experi- 
ment. Increasing the number of adjustable parameters does not improve the 
correlation results. The values (B,, = - 3515.3, B,, = 10042.7 and B,,, = 
- 8068.9) of the Redlich-Kister parameters obtained by means of the 
orthogonal method are within a confidence interval half that computed for 
the classical regression method (Table 7). Both methods of parameter 
estimation give almost the same results, as can be seen in Table 8. The 
slightly better results obtained by the orthogonal method are not important 
from the statistical point of view. 

In the calculations, two methods for parameter estimations were used. In 
both cases, the results were statistically the same; therefore it is better to use 
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TABLE 4 

Correlation parameters in eqn. (4) for the binary systems (i-j) and the mean absolute errors 
of adjustment for the orthogonal regression procedure 

System Type of Parameter Computed errors 
parameters values 6x, x 100 SHE (J mol-‘) 

Acetone-chIoroform A 121 - 7002.5 
A 122 1882.3 
A 123 713.4 
A 124 - 594.4 0.03 0.8 

Acetone-methanol A 131 3067.2 
A 132 428.4 
A 133 179.9 0.02 0.3 

Chloroform-methanol A23l 170.0 
A 232 4707.8 
A233 207.9 
A 234 834.5 
A235 2477.5 
A 236 1455.5 0.12 1.1 

TABLE 5 

Influence of the number of adjustable parameters of the Redlich-Kister equation on the 
computation accuracy of HE data (experimental values from Morris et al. [4]) 

Ternary Computed errors Comparison 
parameters SHE E 

GHmolI’) 
max 1 AHE ] of models 

(J mol-‘) (J mol-‘) (F-test) a 
a = 0.05 

None 39.5 b 56.4 b 166.6 b _ 

40 28.5 36.1 100.5 

+ 40 18.8 23.6 53.5 

+ Bo, 13.2 16.8 52.3 

+ 40 12.1 16.2 51.5 

+ Bo2 10.3 13.7 33.2 

+ B,, 10.2 13.5 30.3 

+ B30 10.2 13.6 31.4 

+ Bo3 10.2 13.5 29.7 

+ B2, 10.2 13.6 30.9 

+ B12 9.6 12.7 34.4 

+ B31 9.6 12.7 34.3 

+ B,3 9.6 12.7 35.2 

+ B23 9.1 12.1 33.6 

+ B32 9.1 12.1 33.3 

+ B22 8.8 11.9 35.5 

+ B33 8.6 11.7 34.3 

+ 
+ 
+ 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

a +, Rejection of the null hypothesis (second model is better then the first one); =, models 
are equivalent. 

b Difference between predicted and measured values. 
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TABLE 6 

Influence of the number of adjustable parameters of the Jones equation on the computation 
accuracy of HE data (experimental values from Morris et al. [4]) 

Ternary 
parameters 

Computed errors Comparison 

6HE E 

TJHmol-‘) 
max]AHE( of models 

(J mol-‘) (J mol-‘) (F-test) a 
OL = 0.05 

none 39.5 b 56.4 b 166.6 b _ 

GO0 28.5 36.1 100.5 

+ Dm 17.8 22.6 43.2 

+ Do10 11.4 14.7 40.7 

+ DOOI 11.4 14.7 39.5 

+ 400 11.0 14.1 35.9 

+ 0020 10.3 13.5 34.0 

+ 4~ 10.1 13.5 34.4 

+ Do30 10.1 13.5 33.9 

+ &33 9.2 13.5 29.4 

+ 0400 9.2 11.8 29.4 

+ 0040 9.0 11.8 31.5 

+Qm 9.0 11.8 30.1 

+ 0220 9.0 11.8 29.9 

+ &to 8.6 12.0 30.2 

+ 
+ 
+ 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

a +, Rejection of the null hypothesis (second model is better then the first); =, models are 
equivalent. 

b Difference between predicted and measured values. 

TABLE 7 

Ternary correlation parameters in eqns. (5) and (6) for the system acetone-chloroform-meth- 
anol with their standard deviations and their lOO(1 - (Y)% confidence interval for the classical 
regression procedure 

Types of Parameter Confidence Parameter Confidence 
parameters value and interval value and interval 

standard standard 
deviation deviation 

Redlich-Kister equation 
With 3 parameters With 4 parameters 

BOO - 3298.5 f 339 963.8 -4418.7k 463 1451.4 
B 10 8665.2 f 616 1748.4 16096.0 & 2267 7096.7 
B 01 - 6819.0 f 635 1801.7 6749.2 + 609 1907.5 
B 20 - _ - 10497.0 * 3093 9678.5 

Jones equation 
With 3 parameters With 4 parameters 

Do00 - 3835.8 & 539 1527.4 - 94.1+ 2858 8942.4 
D 100 9846.6 + 591 1676.6 7704.8 + 1711 5355.2 
D 010 - 7800.3 _t 606 1718.2 - 9995.0 f 1754 5487.6 

DO01 _ - - 2331.9 f 1749 5473.8 
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TABLE 8 

Influence of the number of adjustable parameters of the Redlich-Kister equation on the 
computation accuracy of HE data (experimental values from Morris et al. [4]) 

Redlich- 
Kister 
ternary 
parameters 

Regression 

type 

Errors (eqn. (12)) 

sx, x 100 6x, X100 SHZ” SH2” SH2” SH3” 

l-2 l-3 2-3 

B@J, B10, BOI Classical - _ 1.6 0.5 1.1 13.2 

B B cm,..., 02 Classical - - 1.6 0.5 1.1 10.3 

Bee,..., B,, Classical _ - 1.6 0.5 1.1 9.1 

Boo, B,o, Bo, Orthogonal 0.10 0.13 2.7 0.8 0.4 4.1 

&,,,...,Bo, Orthogonal 0.07 0.11 1.1 0.5 0.4 3.3 

Boo,...,&, Orthogonal 0.06 0.10 0.9 0.4 0.4 3.1 

the classical method taking into account the mathematical and numerical 
complexity of the orthogonal regression. 

In our opinion the use of orthogonal regression is justified only when the 
experimental errors are small and well known, and when the model used 
does not introduce systematic errors. It is difficult to fulfil both of these 
conditions in the case of enthalpy of mixing measurements. 

LIST OF SYMBOLS 

A 
B 
D 

c 
H 

h 
M 

; 

NX 
NU 
NY 
s 

s 

binary parameters of the Redlich-Kister equation, eqn. (4) 
ternary parameters in eqn. (5) 
ternary parameters in eqn. (6) 
adjustable parameter 
enthalpy 
partial enthalpy defined by eqns. (l)-(3) 
number of experimental data points 
number of adjustable parameters 
number of components 
number of error-free independent variables 
number of independent variables treated with experimental errors 
number of dependent variables 
standard deviation in adjusted model parameters (eqn. (13)) 
sum of the weighted squared deviations defined by eqns. (10) and 

(II) 
u hypothetical true values of variables 
V weighting factor for independent variables 
W weighting factor for dependent variables 
X mol fraction in the liquid phase 
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X vector of independent variables 
Y vector of dependent variables 
z thermodynamic variable ( 2 E (x1, x2, HE)) 

Greek letters 

6 mean absolute error 

1 
estimated value of experimental error (eqn. (11)) 
difference between computed and measured value or difference 
between computed ‘true’ and measured value 

Superscripts 

talc computed value 

exp measured value 
E excess functions 

Subscripts 

i, j, k component indices 
(Y level of significance (lOOf - cu)% probability) 

lJ3 v number of degrees of freedom 
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