Note

STANDARD ENTHALPY OF FORMATION OF THE MONOCLINIC FORM OF Cs_2CdI_4

J.P. AUFFREDIC and V. TOUCHARD

Laboratoire de Cristallochimie (URA 254), Université de Rennes, Avenue du Général Leclerc, F-35042 Rennes Cedex (France)

(Received 25 October 1989)

Dicaesium cadmium tetraiodide Cs_2CdI_4 has two polymorphic forms at room temperature depending on its preparation [1,2]. When prepared from an aqueous equimolar solution of CsI and CdI₂, the monoclinic α -phase is obtained with a Sr₂GeS₄-type structure. Above 400 K, it undergoes a phase transformation to an orthorhombic modification which is isotypic with K_2SO_4 [3,4]. In this paper the standard enthalpy of formation of α -Cs₂CdI₄ is reported as calculated from the results of solution calorimetry.

Calorimetric measurements were made of the enthalpy of solution of α -Cs₂CdI₄ in pure water and of CsI in an aqueous CdI₂ solution. The masses of α -Cs₂CdI₄ and CsI dissolved were about 60 and 40 mg respectively, so that the molality of Cs₂CdI₄ was 1.163×10^{-2} mol kg⁻¹ in the resulting solutions. The measurements were carried out at 298 K using a Calvet microcalorimeter, the design of which has been described [5]. The general procedure and the calibration have been published [6].

The enthalpy of formation of α -Cs₂CdI₄ was calculated from the reaction enthalpies of the following reactions

$$\alpha - Cs_2 CdI_4(cr) + 4780H_2O(l) = [Cs_2 CdI_4 + 4780H_2O](sln) \qquad \Delta_r H_1^{\Leftrightarrow}$$
(1)

$$Cs(cr) + \frac{1}{2}I_2(cr) = CsI(cr) \qquad \Delta_r H_2^{\diamond}$$
(2)

$$Cd(cr) + I_2(cr) = CdI_2(cr) \qquad \Delta_r H_3^{\oplus}$$
 (3)

$$CdI_{2}(cr) + 4780H_{2}O(l) = [CdI_{2} + 4780H_{2}O](sln) \qquad \Delta_{r}H_{4}^{\Theta}$$
(4)

$$2CsI(cr) + [CdI_{2} + 4780H_{2}O](sln) = [Cs_{2}CdI_{4} + 4780H_{2}O](sln)$$

$$\Delta_{r}H_{5}^{\Phi}$$
(5)

The mean values of $\Delta_r H_1^{\oplus}$ and $\Delta_r H_5^{\oplus}$, obtained from eight calorimeter measurements of each quantity, are 89.33 ± 0.88 kJ mol⁻¹ and 62.78 ± 0.60 kJ mol⁻¹ respectively, the uncertainties being twice the standard deviation of the means. Values of $\Delta_r H_2^{\oplus}$, $\Delta_r H_3^{\oplus}$ and $\Delta_r H_4^{\oplus}$ were taken from the literature: $\Delta_r H_2^{\oplus} = -348.14 \pm 0.16 \text{ kJ mol}^{-1}$ [7]; $\Delta_r H_3^{\oplus} = -204.18 \pm 3.35 \text{ kJ mol}^{-1}$ [8]; $\Delta_r H_4^{\oplus} = 10.38 \pm 0.08 \text{ kJ mol}^{-1}$ [9,10].

Based on the following equation

$$\Delta_{\rm f} H^{\,\oplus}_{\alpha-{\rm Cs}_2{\rm CdI}_4({\rm cr})} = 2\Delta_{\rm r} H^{\,\oplus}_2 + \Delta_{\rm r} H^{\,\oplus}_3 + \Delta_{\rm r} H^{\,\oplus}_4 + \Delta_{\rm r} H^{\,\oplus}_5 - \Delta_{\rm r} H^{\,\oplus}_1 \tag{6}$$

the enthalpy of formation of α -Cs₂CdI₄ was calculated to be $\Delta_{f} H^{\oplus}_{\alpha$ -Cs₂CdI₄(cr) = -916.63 ± 3.53 kJ mol⁻¹.

REFERENCES

- 1 V. Touchard, M. Louër and D. Louër, Powder Diffraction, 1 (2) (1986) 35.
- 2 K.S. Aleksandrov, S.V. Melnikova, I.N. Flerov, A.D. Vasilev, A.I. Kruglik and I.T. Kokov, Phys. Status Solidi A, 105 (1988) 441.
- 3 V. Touchard, M. Louër, J.P. Auffrédic and D. Louër, Rev. Chim. Min., 24 (1987) 1.
- 4 K.S. Aleksandrov, I.N. Flerov, I.T. Kokov, A.I. Kruglik, S.V. Melnikova and E.V. Shemetov, Ferroelectrics, 79 (1988) 137.
- 5 E. Calvet and H. Pratt, Recents Progrès en Microcalorimétrie, Dunod, Paris, 1958.
- 6 J.P. Auffrédic, C. Carel and D. Weigel, C.R. Acad. Sci. Paris, 175 (1972) 5.
- 7 E.H.P. Corfunke and G. Prins, Thermochim. Acta, 90 (1985) 169.
- 8 O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, Pergamon, Oxford, 5th edn. 1979.
- 9 D.D. Wagman, W.H. Evans, W.B. Parker, I. Halow, S.M. Bailey and R.H. Schumm, Nat. Bur. Stand. (U.S.), Tech. Note 2170-3, 1968.
- 10 A.L. Robinson and W.E. Wallace, Chem. Rev., 30 (1942) 195.