A REFERENCE VALUE METHOD OF THE CORRESPONDING STATES PRINCIPLE FOR THE PREDICTION OF LATENT HEATS OF VAPORIZATION OF PURE LIQUIDS *

REN YUAN WANG and JUN SHI

Department of Chemical Engineering, Nanjing Institute of Chemical Technology, Nanjing 210009 (P.R. China)

(Received 25 August 1989)

ABSTRACT

Based on a reference value method of the corresponding states principle, a generalized equation for the latent heat of vaporization of liquid is developed. The latent heats of vaporization calculated with the proposed equation are compared with the corresponding experimental values presented in the literature for 71 compounds, involving a total of 2695 data points. These comparisons are further examined using the results of the Watson equation (1943), the Fish and Lielmezs equation (1975) and the Xu Zhong equation (1984). The results of these comparisons indicate that the proposed equation is more accurate than the other three equations.

INTRODUCTION

The latent heat of vaporization is an indispensable physical property for the design and development of industrial processes at elevated temperatures. It is usually not convenient to determine all the required data experimentally. Hence a correlation is needed to estimate values or to extend or extrapolate limited available data from the freezing point all the way to the critical temperature. Watson [1], Fish and Lielmezs [2], Xu Zhong [3], and others, have proposed equations that may be used to estimate the latent heats of vaporization of pure compounds at different temperatures once the value at the normal boiling point is known. The prediction of the latent heat of vaporization is discussed in many publications. Reid et al. [4] present excellent summaries of the previous work in this area.

We have recently developed a reference value method of the corresponding states principle (RVMCSP) [5] based on a multiparameter corresponding

^{*} Presented at the International Conference on Chemical Thermodynamics and Calorimetry, Beijing, P.R. China, 25–28 August 1989.

states principle [6]. We apply the RVMCSP to develop a generalized equation for predicting the latent heat of vaporization of pure compounds in this study. The pure compound parameters required are the same as those used by the equations of Watson, Fish and Lielmezs, and Xu Zhong.

DEVELOPMENT OF THE GENERALIZED EQUATION

In this section we first consider the reference value method of the corresponding states principle (RVMCSP), and then apply the RVMCSP to derive the generalized equation for the latent heat of vaporization of a liquid.

Based on the multiparameter corresponding states principle [6], any fluid property G has the following reduced equation of state

$$G_{\rm r} = \frac{G(T, P)}{G_{\rm c}(T_{\rm c}, P_{\rm c})} = G_{\rm R}(T_{\rm r}, P_{\rm r}, W_{\rm c}, W_{\rm p}, W_{\rm a}, W_{\rm q})$$
(1)

where G_c is the critical temperature T_c and critical pressure P_c dependence of the characteristic parameter pertaining to property G; $T_r = T/T_c$ is the reduced temperature; $P_r = P/P_c$ is the reduced pressure; and W_c , W_p , W_a and W_q are, respectively, the configurational, polar, associated and quantum factors. We now assume that there are properties A and B whose reduced equations have the forms

$$A_{\rm r} = \frac{A(T, P)}{A_{\rm c}(T_{\rm c}, P_{\rm c})} = A_{\rm R}^{[1]}(T_{\rm r})A_{\rm R}^{[2]}(P_{\rm r})A_{\rm R}^{[3]}(W_{\rm c}, W_{\rm p}, W_{\rm a}, W_{\rm q})$$
(2)

$$Br = \frac{B(T, P)}{B_c(T_c, P_c)} = B_R^{[1]}(T_r, W_c) B_R^{[2]}(P_r, W_c) B_R^{[3]}(W_c, W_p, W_a, W_q)$$
(3)

where A_r and B_r are the reduced properties. If the values of the properties A and B at a reference temperature T_0 and a pressure P are known, taking $A(T_0, P)$ and $B(T_0, P)$ as the reference values gives the equations

$$\frac{A(T, P)}{A(T_0, P)} = \frac{A_{\rm R}^{(1)}(T_{\rm r})}{A_{\rm R}^{(1)}(T_{\rm or})}$$
(4)

$$\frac{B(T, P)}{B(T_0, P)} = \frac{B_{\rm R}^{(1)}(T_{\rm r}, W_{\rm c})}{B_{\rm R}^{(1)}(T_{\rm 0r}, W_{\rm c})}$$
(5)

where $T_{0r} = T_0/T_c$. Using these two equations we can predict properties A and B at different temperatures from those at a reference temperature. If the values of the properties A and B at a temperature T and a reference

pressure P_0 are known, taking $A(T, P_0)$ and $B(T, P_0)$ as the reference values gives the equations

$$\frac{A(T, P)}{A(T, P_0)} = \frac{A_{\rm R}^{[2]}(P_{\rm r})}{A(P_{\rm 0r})}$$
(6)

$$\frac{B(T, P)}{B(T, P_0)} = \frac{B_{\rm R}^{[2]}(P_{\rm r}, W_{\rm c})}{B_{\rm R}^{[2]}(P_{\rm 0r}, W_{\rm c})}$$
(7)

where $P_{0r} = P_0/P_c$. Using these two equations, we can predict properties A and B at different pressures from those at a reference pressure. Equations (4)-(7) are the RVMCSP basic equations. These equations provide a basis for developing new equations for predicting fluid properties for large classes of compounds and mixtures. We have successfully applied eqn. (4) to develop the equations for predicting surface and interfacial tensions of pure liquids and liquid mixtures [5].

We now begin to develop the generalized equation to the latent heat of vaporization. Based on the RVMCSP, from eqn. (4), the generalized equation for the latent heat of vaporization can be expressed as

$$\frac{H_{\rm v}(T)}{H_{\rm v}(T_0)} = \frac{H_{\rm R}(T_{\rm r})}{H_{\rm R}(T_{\rm or})}$$
(8)

where $H_v(T)$ is the latent heat of vaporization at the temperature of interest, T; $H_v(T_0)$ is the latent heat of vaporization at a reference temperature T_0 ; and H_R is a universal function of the reduced temperature. The function H_R can be expressed as

$$H_{\rm R}(T_{\rm r}) = (1 - T_{\rm r})^n (a + bT_{\rm r} + cT_{\rm r}^2)$$
(9)

where n, a, b, and c are universal constants which are independent of the compounds. The term of $(1 - T_r)$ is introduced by considering that the latent heat of vaporization is equal to zero at the critical point for any compound. Using the normal boiling temperature, T_b , as the reference temperature and substituting eqn. (9) into eqn. (8) yields

$$\frac{H_{\rm v}(T)}{H_{\rm v}(T_{\rm b})} = \left(\frac{1-T_{\rm r}}{1-T_{\rm br}}\right)^n \left(\frac{a+bT_{\rm r}+cT_{\rm r}}{a+bT_{\rm br}+cT_{\rm br}}\right)$$
(10)

where $T_{\rm br} = T_{\rm b}/T_{\rm c}$. We obtained n = 0.38, a = 10, b = 3, and c = 2 from the latent heat data of water [7]. Thus, we have

$$\frac{H_{\rm v}(T)}{H_{\rm v}(T_{\rm b})} = \left(\frac{1-T_{\rm r}}{1-T_{\rm br}}\right)^{0.38} \left(\frac{10+3T_{\rm r}+2T_{\rm r}}{10+3T_{\rm br}+2T_{\rm br}}\right)$$
(11)

Equation (11) is our proposed generalized equation for the prediction of latent heats of vaporization of pure liquids at different temperatures.

TABLE 1

Deviations	between	experimental	and	predicted	latent	heats
Deviations	between	experimental	and	predicted	latent	heats

Compounds	Temp. range	No. of	Average absolute deviation (%)			
	T _r	points	This work	Watson eqn.	FL eqn.	Xu eqn.
Inorganic						
Monatomic, diat	omic					
Helium	0.4239-0.9981	18	13.64	13.84	25.15	17.06
Argon	0.5553-0.9943	69	3.20	3.42	2.42	0.56
Krypton	0.5528-0.9933	47	2.76	2.98	2.05	1.35
Xenon	0.5570-0.9941	65	2.40	2.77	1.38	1.30
Chlorine	0.4391_0.9984	24	1 28	1 49	2.22	1 64
Fluorine	0.6584 - 0.9875	20	1.20	1.85	2 39	1.66
Oxygen	0 3512-0 9950	102	3.00	3 52	1 90	1 21
Polvatomic	0.0012 0.0000	102	5.00	5.52	1.70	1.2.1
Water	0 4220_0 9998	96	0.89	1 38	2 26	1 18
Sulphur dioxide	0 7504_0 9826	18	3 55	3 74	4 27	3 53
Carbon dioxide	0.7119_0.9961	43	1.05	1 38	1.95	1.56
	0.7117-0.7701	45	1.05	1.50	1.95	1.50
Organic						
Alkanes						
Methane	0.4776-0.9971	29	2.62	2.88	3.48	3.13
Propane	0.5122-0.9924	18	1.08	1.30	1.81	1.28
Isobutane	0.3017-0.9878	29	1.36	2.08	1.68	1.67
n-Pentane	0.3260-0.6666	17	0.23	1.33	0.55	0.32
Isopentane	0.2672-0.6795	20	0.30	1.54	0.94	0.57
n-Hexane	0.3606-0.9907	33	1.46	2.11	1.50	1.89
n-Heptane	0.3391-0.9870	36	0.55	1.04	2.00	1.10
n-Octane	0.3919-0.9891	35	0.98	0.88	2.19	1.18
2,2,4-Trimethyl-						
pentane	0.3181-0.9980	38	1.00	1.85	3.06	1.35
n-Nonane	0.3749-0.9966	38	1.08	1.70	4.30	1.17
n-Decane	0.4089-0.9903	37	1.03	0.68	3.54	0.94
Naphthenes						
Cyclopentane	0.3579-0.9832	33	0.60	1.11	1.06	0.66
Methyl-						
cyclopentane	0.2499-0.9820	40	0.70	1.77	1.35	1.26
Ethyl-						
cyclopentane	0.2514-0.9889	43	1.60	2.68	2.71	1.87
1,1-Dimethyl-						
cyclopentane	0.3874-0.9691	33	2.21	2.70	1.82	2.68
Cyclohexane	0.5120-0.9821	27	1.12	1.27	0.62	1.97
Methyl-						
cyclohexane	0.2676-0.9841	42	0.74	1.73	1.75	1.06
Ethyl-						
cyclohexane	0.2678-0.9737	44	3.15	3.63	2.53	3.30

Compounds	Temp. range	No. of	Average absolute deviation (%)			
	$T_{\rm r}$	points	This	Watson	FL	Xu
			work	eqn.	eqn.	eqn.
Olefins					P 2 - 4	
Propylene	0.2552-0.9948	28	1.62	2.03	2.40	1.56
1-Butene	0.2220-0.9847	33	1.00	1.27	1.31	1.25
cis-2-Butene	0.3343-0.9883	29	1.51	2.06	2.60	1.91
Trans-2-Butene	0.4044-0.9883	26	0.90	1.35	1.02	1.45
Isobutene	0.3186-0.9886	29	0.94	1.70	1.04	1.44
1-Pentene	0.2386-0.9979	37	0.87	1.51	1.81	0.85
cis-2-Pentene	0.2586-0.9727	35	1.51	2.31	1.36	1.94
Trans-2-Pentene	0.2802-0.9747	34	1.22	2.03	1.19	1.78
1-Hexene	0.2839-0.9782	36	0.83	1.65	1.58	1.29
1-Heptene	0.3594-0.9926	35	0.60	1.19	2.96	1.12
1-Octene	0.3056-0.9938	40	1.37	2.05	4.35	2.23
Cyclopentene	0.2828-0.9743	36	1.55	2.26	1.49	1.93
Cyclohexene	0.3090-0.9692	38	2.58	3.21	2.20	2.90
Propadiene	0.3635-0.9982	26	2.75	3.19	3.05	2.32
1,3-Butadiene	0.4073-0.9770	47	0.91	0.80	2.14	1.38
Isoprene	0.2750-0.9566	34	4.31	3.80	3.80	4.56
Aromatics						
Benzene	0.7980-0.9993	47	5.38	5.41	5.92	6.66
Tolulene	0.3084-0.9818	41	0.48	1.23	1.19	0.90
o-Xylene	0.4008-0.9866	38	0.92	1.05	2.12	0.93
m-Xylene	0.3766-0.9903	39	0.73	1.28	2.19	1.07
n-Xylene	0.4742-0.9919	33	0.94	1.22	2.30	0.60
Ethylbenzene	0.2956-0.9735	43	0.97	1.10	1.76	0.71
Isopropylbenzene	0.2879-0.9769	45	0.73	1.45	2.00	1.23
n-Butylbenzene	0.2922-0.9730	46	1.37	0.67	1.81	0.61
Biphenyl	0.4658-0.8402	16	3.38	3.06	2.50	3.65
Naphthalene	0.4833-0.9891	39	1.16	1.32	2.71	1.87
Acetylenes						
Methylacetylene	0.4321-0.9810	23	0.53	0.84	0.72	0.75
1-Butyne	0.3303-0.9774	31	0.70	0.70	1.12	0.54
2-Butyne	0.4981-0.9898	25	0.51	0.81	0.86	1.24
Halogenated hydr	ocarbons					
Methyl chloride	0.5121-0.8004	25	0.20	0.20	0.33	0.66
fluoromethane Dichlorodi-	0.4524-0.8769	62	0.27	0.33	0.48	0.28
fluoromethane Monochlorotri-	0.5277-0.9953	79	1.13	1.35	1.73	0.84
fluoromethane Dichloromono-	0.5397-0.9896	69	0.91	1.11	1.76	1.30
fluoromethane	0.4723-0.9996	120	1.35	1.38	0.56	2.15

TABLE 1 (continued)

Compounds	Temp. range T _r	No. of points	Average absolute deviation (%)			
			This work	Watson eqn.	FL eqn.	Xu eqn.
Halogenated hyd	rocarbons	14 ma				
Monochlorodi-						
fluoromethane	0.4691-0.9946	73	0.58	0.63	1.18	1.56
Trichlorotri-						
fluoroethane	0.4990-0.7248	23	0.25	0.25	0.46	0.22
Dichlorotetra-						
fluoroethane	0.5565-0.7952	21	0.98	1.12	1.64	1.36
Monochlorodi-						
fluoroethane	$0.5931 {-} 0.8614$	23	2.11	1.99	1.16	3.29
Oxygen-containing	g compounds					
Methanol	0.5323-0.9805	24	1.15	1.36	2.05	1.95
1-Propanol	0.5088-0.9931	27	7.17	7.20	4.13	7.19
Ethyl ether	0.6492-0.9919	17	0.70	0.83	2.18	1.05
Phenyl ether	0.6622-0.7988	12	1.33	1.23	0.54	2.22
Ethyl acetate	0.6749-0.9807	17	2.17	2.35	1.10	1.42

TABLE 1 (continued)

RESULTS AND DISCUSSIONS

The generalized equation described above was tested by predicting the latent heats of vaporization for 71 compounds involving a total of 2695 data points and the results compared with the corresponding experimental values presented in the literature [7]. The average absolute deviations are summarized in Table 1. The results of the proposed equation have been compared with those produced by the other three equations, namely, the Watson equation [1], the Fish-Lielmezs (FL) equation [2], and the Xu equation [3]. The deviations produced by these three equations are also presented in Table 1.

It can be seen from Table 1 that, for most compounds, the deviations calculated with the proposed equation are smaller than those calculated with the other three equations. The average deviations exceeding 3% are: 8 for the proposed equation, 11 for the Watson equation, 11 for the FL equation, and 9 for the Xu equation. For deviations less than 1%, the proposed equation, the Watson equation, the FL equation, and the Xu equation account for 29, 12, 10 and 17, respectively.

In order to form an opinion on the capability of each of these equations to estimate the latent heat of vaporization for compounds corresponding to their respective classification, the results in Table 1 have been summarized in Table 2. A review of the deviations presented in Table 2 indicates that the generalized equation developed in this study has the greatest accuracy with

TABLE 2

Class of	No. of compounds	No. of points	Average absolute deviation (%)			
compound			This work	Watson eqn.	FL eqn.	Xu eqn.
Inorganic						
Monatomic, diatomic	7	345	3.25	3.59	3.19	2.00
Polyatomic	3	157	1.24	1.65	2.40	1.55
Organic						
Alkanes	11	330	1.10	1.57	2.48	1.37
Naphthenes	7	262	1.49	2.21	1.78	1.85
Olefins	16	543	1.51	2.00	2.17	1.87
Aromatics	10	387	1.56	1.75	2.49	1.79
Acetylenes	3	79	0.59	0.78	0.92	0.82
Halogenated						
hydrocarbons	9	495	0.91	1.00	1.05	1.36
Oxygen-containing						
compounds	5	97	2.95	3.05	2.30	3.19
Over all	71	2695	1.59	1.93	2.12	1.72

Summary of deviations according to classes of compounds

the exception of monatomic and diatomic compounds for which the generalized equation is less accurate than the FL and Xu equations, and oxygencontaining compounds for which the generalized equation is less accurate than the Xu equation.

The results in Table 2 show that the generalized equation gives the lowest overall average deviation of 1.59% for the 71 compounds involving 2695 data points, but using the capability of the Watson equation, the FL equation, and Xu equation, these deviations are found to be 1.93%, 2.12%, and 1.72%, respectively. Obviously, the generalized equation developed in this work is a more accurate method than the others for the prediction of the latent heat of vaporization.

CONCLUSIONS

We have applied the reference value method of the corresponding states principle to develop the generalized equation for predicting the latent heat of vaporization of pure compounds. Good agreement between the predicted and experimental latent heats of vaporization is obtained. Further work is in progress to apply the RVMCSP to develop equations for the prediction of other thermodynamic and transport properties of fluids.

LIST OF SYMBOLS

- a, b, c universal constants
- A, B, G properties of fluids
- $H_{\rm v}$ heat of vaporization
- *n* universal constant
- P pressure
- T absolute temperature

Subscripts

- b property at normal boiling point
- c critical state or characteristic parameter
- r reduced state
- R universal function

REFERENCES

- 1 K.M. Watson, Ind. Eng. Chem., 35 (1943) 398.
- 2 L.W. Fish and J. Lielmezs. Ind. Eng. Chem. Fundam., 14 (197) 248.
- 3 Xu Zhong, Chem. Eng. Commun., 29 (1984) 257.
- 4 R.C. Reid, J.M. Prausnitz and B.E. Poling, The Properties of Gases and Liquids, 4th edn., McGraw-Hill Book Company, 1987.
- 5 R.Y. Wang and J. Shi, Proceedings of the International Symposium on Thermodynamics in Chemical Engineering and Industry, Beijing, China, 1978, Vol. 1, p. 116.
- 6 R.Y. Wang, M.S. Thesis, East China Inst. of Chem. Tech., 1986.
- 7 N.B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, Wiley, New York, 2nd edn., 1975.