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ABSTRACT

The heat capacities and enthalpies of phase transition for mixtures of pentaerythritol and
trimethylolpropane in different mole ratios were measured over the superambient tempera-
ture range by means of an automated adiabatic calorimeter. Two phase transitions, one a
solid—solid transition and the other melting, were found for each mole ratio studied. The
solid—solid transition of the mixture is considered to be due to the melting of trimethyl-
olpropane among the lattice sites of pentaerythritol. The melting enthalpy of the mixture is
mainly attributed to the breaking of the pentaerythritol lattice.

INTRODUCTION

The solid-solid transition temperature of pentaerythritol (PE), used as a
solid—solid phase change material for storage of solar energy or low-temper-
ature heat energy, seems to be rather high. The use of dopants is a effective
method for reducing the solid-solid transition temperature of the com-
pound. Chandra et al. [1] reported that the most effective dopant was
trimethylolpropane (TMP), which lowered the transition temperature of PE
from 461 to 321.4 K with a resultant enthalpy of 16.97 kJ mol™"' for the
50:50 mole-ratio system. To verify this interesting result and to study the
temperature dependence of the transition enthalpies on the mole ratio for
the PE-TMP system, we measured the heat capacities and phase transition
parameters for this system at different mole ratios by means of an auto-
mated adiabatic calorimeter.

EXPERIMENTAL
Samples for the experiments were prepared in the following manner.
Pentaerythritol reagent (No. 1 Reagent Manufactory, Shanghai) was sub-

limed and recrystallised twice from distilled water. Its purity was found to
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Fig. 1. Experimental molar heat capacities for the pentaerythritol-trimethylolpropane system
in different mole ratios: @,55:45; @, 50:50; a, 40:60; A, 30:70.

be 99.96% by chemical analysis. Trimethylolpropane reagent (No. 1 Reagent
Manufactory, Shanghai) was recrystallised from dry ether. The purity was
found to be 99.12 mol% from the analysis of its equilibrium melting curve
[2]. The two purified substances were mixed and ground into fine powder in
the desired mole ratios. The mixture was heated to produce a clear liquid,
and ground into a fine powder again after cooling to room temperature.

The heat capacity and phase transition parameters were measured by
means of an automated adiabatic calorimeter [3]. The operation of the
calorimeter was checked by means of the measurement of the heat capacity
of a-Al,0;. A calorimetric cell, made of silver, contained 27.5980, 25.9031,
27.5974 and 29.6849 g, of the mixtures in the mole ratios 55:45, 50:50,
40: 60 and 30: 70, respectively.

The experimental molar heat capacities for the PE-TMP system are
shown in Fig. 1. The deviation between the experimental points in non-phase
transition regions and their smoothed values is within +0.3%.

The experimental molar heat capacities for the PE-TMP system are also
listed in Table 1.
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Direct enthalpy measurements were made on the PE-TMP system and
the parameters of the phase transitions thus obtained are given in Table 2, in
which T; and T, are the starting and finishing temperatures of the experi-
ments, respectively, in the direct enthalpy measurements. The ‘normal heat
capacities’ in the transition regions were obtained by extrapolation of the
experimental heat capacities in the non-transition regions.

DISCUSSION

Figure 1 shows two transitions for the PE-TMP system at each mole ratio
studied: the one at the lower temperature is the solid—solid transition and
the higher temperature one is melting, depending on macroscopic observa-
tions. The temperature and enthalpy dependences of the solid-solid transi-
tion on the mole ratio of the PE-TMP system are shown in Fig. 2. To
discuss the nature of the solid—solid transitions, the melting temperature and
enthalpy of TMP are also shown in Fig. 2 as the starting point of the two
curves in the figure. As seen from Fig. 2, the temperatures and enthalpies of
the solid-solid transitions are lower than the melting temperature and
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Fig. 2. The temperature and enthalpy dependences of the solid—solid transition on the mole
ratio for the pentaerythritol-trimethylolpropane system.
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TABLE 2
Transition parameters of the pentaerythritol-trimethylolpropane system
T.K) LK LK  AgH (mol™) A S, JK T mol™h)

PE (55 mol%)-TMP (45 mol%)
Solid—solid

330.52 315.06 334.63 7.39
315.92 339.32 7.56
mean value: 7.48 22.63
Melting
447 397.28 448.25 12.01 26.86

PE (50 mol%)-TMP (50 mol%)
Solid-solid

330.64 321.78 335.13 8.97
317.76 334.20 8.22
mean value: 8.60 26.01
Melting
439 412.28 450.97 6.49 14.79

PE (40 mol%)-TMP (60 mol%)
Solid—solid

330.79 319.85 336.08 10.07
317.60 339.82 9.37
mean value: 9.72 29.38
Melting
431 383.35 446.12 5.77 13.38

PE (30 mol%)-TMP (70 mol%)

Solid—solid

331.11 321.38 333.17 12.70
320.62 336.16 12.83
319.18 338.08 12.57

mean value: 12.70 38.35
Melting
423 390.49 439.02 5.10 12.06

enthalpy of TMP respectively, and decrease with the mole increment of PE
in the PE-TMP system.

Using the data in Table 2, the ratios of the solid—solid transition enthalpy
to the melting enthalpy of the TMP component for the PE-TMP systems at
each mole ratio are calculated to be about 0.8. Also the entropies of the
solid—solid transition of the system decreases rapidly with increasing PE
content. This implies that the positional disorder of TMP molecules in the
PE-TMP system, as it is molten, is limited by the molecules of PE at their
lattice sites, and that complete disorder is not attained at the melting point
of pure TMP. Furthermore, depending on macroscopic observations, the
mechanical strength of the PE-TMP system at temperatures above the



109

N
o
T

z Atr‘s Hm
TMP /e x Ao Hm
n

ik

o8 1 - L L
0 20 40 60 80

PE °/
Fig. 3. The ratio of total transition enthalpy to the melting enthalpy of TMP component for
the pentaerythritol-trimethylolpropane system.

solid—solid transitions decreases with increasing PE content. Therefore the
solid—solid transition of the PE-TMP system can be considered to be due to
the melting of TMP among the PE lattice.

The ratios of the total enthalpy, including the solid—solid and melting
transition enthalpies, to the melting enthalpy of the TMP component for
each mole ratio in the PE-TMP system are shown in Fig. 3. As seen from
Fig. 3, these ratios are larger than 1, and increase with the mole content of
PE. This shows that the melting enthalpy of the system is mainly attributed
to the breaking of the PE lattice.

Due to its asymmetric molecular structure and high melting entropy (64.3
J K7! mol™) [2], TMP could not be a plastic crystal, while PE is a typical
plastic crystal. Apparently, mixing the two substances cannot produce a
continuous range of solid solution. Moreover, the experimental solid—solid
transition enthalpy obtained in this work for the PE-TMP system for the
50:50 mole ratio is much lower than the value obtained by Chandra et al.
[1]. Therefore, we doubt whether the PE-TMP system could be a useful
solid—solid phase change material for storage of solar energy or low-temper-
ature heat energy.
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