ON A NEW KINETIC CLASSIFICATION OF THE SOLID-GAS THERMAL DECOMPOSITION REACTIONS WHICH OCCUR IN NON-ISOTHERMAL CONDITIONS

E. URBANOVICI

Research Institute for Electrotechnics, Sfîntu Gheorghe Branch, Str. Jozsef Attila, Nr. 9, Sfîntu Gheorghe, Județul Covasna (Romania)

E. SEGAL

Department of Physical Chemistry and Electrochemical Technology, Faculty of Chemical Technology, Polytechnic Institute of Bucharest, Bulevardul Republicii 13, Bucharest (Romania)

(Received 6 December 1989)

ABSTRACT

An analysis of the change in the non-isothermal reaction rate with heating rate presented in a previous paper allowed a classification criterion for the thermal decompositions which occur in non-isothermal conditions to be proposed and a kinetic classification of these reactions to be suggested. This paper attempts to explain the changes in the non-isothermal reaction rate with heating and, thus, to define the above-mentioned criterion and classification.

INTRODUCTION

The classical non-isothermal rate equation is [1]

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \frac{A}{\beta} f(\alpha) \,\mathrm{e}^{-E/RT} \tag{1}$$

the heating rate β being considered constant, with

$$A = \text{const.} \tag{2}$$

$$E = \text{const.}$$
 (3)

and

$$f(\alpha) = (1-\alpha)^n \alpha^m \left[-\ln(1-\alpha) \right]^p \tag{4}$$

according to Šesták and Berggren [2] where

$$n = \text{const.}; \quad m = \text{const.}; \quad p = \text{const.}$$
(5)

For variable kinetic parameters, the equation [1]

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \frac{A(\alpha)}{\beta} f^{\star}(\alpha) \,\mathrm{e}^{-E(\alpha)/RT} \tag{6}$$

0040-6031/90/\$03.50 © 1990 – Elsevier Science Publishers B.V.

with

 $f^{\star}(\alpha) = f(\alpha, n(\alpha), m(\alpha), p(\alpha))$ ⁽⁷⁾

should be used instead of eqn. (1)

In a previous paper [3], two types of change in the non-isothermal reaction rate with heating rate were demonstrated. For the dehydration of calcium oxalate with α constant

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T}(\beta)\downarrow \text{ as }\beta\uparrow \tag{8}$$

Correspondingly for the thermal decomposition of potassium permanganate with α constant

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T}(\beta)\uparrow \text{ as }\beta\uparrow \tag{9}$$

In the following we shall try to explain the differences in eqns. (8) and (9) using the classical equation, eqn. (1), as well as the non-classical equation, eqn. (6).

CLASSICAL CASE

Integrating eqn. (1), one obtains

$$g(\alpha) = \frac{A}{\beta} \int_0^T e^{-E/RT} dT$$
(10)

or by solving approximately the integral from the right side of eqn. (10)

$$g(\alpha) = \frac{A}{\beta} \frac{RT^2}{E} e^{-E/RT} Q\left(\frac{E}{RT}\right)$$
(11)

where

$$Q\left(\frac{E}{RT}\right) < 1 \tag{12}$$

Let α be constant and let

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T}(\beta) = \alpha^{\star}(\beta) \tag{13}$$

Taking the derivative of eqn. (1) with respect to β for α being constant

$$\frac{\mathrm{d}\alpha^{\star}(\beta)}{\mathrm{d}\beta} = \frac{A}{\beta}f(\alpha) \ \mathrm{e}^{-E/RT} \left[-\frac{1}{\beta} + \frac{E}{RT^2} \frac{\mathrm{d}T}{\mathrm{d}\beta} \right]$$
(14)

where, for simplicity's sake, T is written for $T(\beta)$.

From eqn. (10), taking the derivative with respect to β we get [4]

$$g(\alpha) = A \ e^{-E/RT} \frac{\mathrm{d}T}{\mathrm{d}\beta}$$
(15)

Equation (14) with $dT/d\beta$ given by eqn. (15) becomes

$$\frac{\mathrm{d}\alpha^{\star}(\beta)}{\mathrm{d}\beta} = \alpha^{\star}(\beta) \left[-\frac{1}{\beta} + \frac{E}{RT^2} \,\mathrm{e}^{E/RT} \frac{g(\alpha)}{A} \right] \tag{16}$$

Substituting the pre-exponential factor A from eqn. (11) into eqn. (16)

$$\frac{\mathrm{d}\alpha^{\star}(\beta)}{\mathrm{d}\beta} = \frac{\alpha^{\star}(\beta)}{\beta} \left[Q\left(\frac{E}{RT}\right) - 1 \right]$$
(17)

As $\alpha^{\star}(\beta)/\beta > 0$, taking into account relationship (12)

$$\frac{\mathrm{d}\alpha^{\star}(\beta)}{\mathrm{d}\beta} < 0 \tag{18}$$

According to inequality (18), the function $\alpha^{\star}(\beta)$ decreases when the heating rate β increases, thus

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T}(\beta)\downarrow \text{ as }\beta\uparrow \tag{19}$$

This result shows that a description of the decomposition in classical terms leads only to a decrease in the non-isothermal reaction rate with the heating rate (for α constant), as was demonstrated experimentally in the dehydration of calcium oxalate.

NON-CLASSICAL CASE

For α constant, the derivative of eqn. (6) with respect to β gives

$$\frac{\mathrm{d}\alpha^{\star}(\beta)}{\mathrm{d}\beta} = \alpha^{\star}(\beta) \left[-\frac{1}{\beta} + \frac{E(\alpha)}{RT^2} \frac{\mathrm{d}T}{\mathrm{d}\beta} \right]$$
(20)

In this case, $dT/d\beta$ cannot be evaluated as a function of the kinetic parameters.

Nevertheless, taking into account that for α constant [5]

$$\frac{1}{T} = a + b \ln \beta \qquad (a = \text{const.}, b = \text{const.})$$
(21)

and

$$\frac{\mathrm{d}T}{\mathrm{d}\beta} = -T^2 \frac{b}{\beta} \tag{22}$$

Taking into account this result, eqn. (2) becomes

$$\frac{\mathrm{d}\alpha^{\star}(\beta)}{\mathrm{d}\beta} = \frac{\alpha^{\star}(\beta)}{\beta} \left[-1 - \frac{E(\alpha)b}{R} \right]$$
(23)

The sign of this expression cannot be predicted for the general case as the dependences of b on the kinetic parameters are unknown. Assessing the dependences of b on $A(\alpha)$, $f^{\star}(\alpha)$ and $E(\alpha)$ is a future project. For the time

being, b and $E(\alpha)$ will be determined from experimental data. The two following examples make use of experimental data given elsewhere [3].

First example: the decomposition of potassium permanganate

 $\alpha = 0.45$ $E(\alpha = 0.45) = 33.87 \text{ kcal mol}^{-1}$ $\beta_1 = 1.5 \text{ K min}^{-1} \text{ and } \beta_2 = 3 \text{ K min}^{-1}$

The system

$$\frac{1}{514.0} = a + b \ln 1.5$$

$$\frac{1}{529.5} = a + b \ln 3$$
(24)

leads to the following value for b

$$b = -8.2163 \times 10^{-5} \text{ K}^{-1} \tag{25}$$

For the expression $d\alpha^{\star}(\beta)/d\beta$, obviously

$$\frac{\mathrm{d}\alpha^{\star}(\beta)}{\mathrm{d}\beta} = 0.4004 \frac{\alpha^{\star}(\beta)}{\beta} > 0$$
(26)

Thus for the decomposition of potassium permanganate

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \alpha^{\star}(\beta) \uparrow \text{ as } \beta \uparrow$$
(27)

in qualitative agreement with the experimental data.

Second example: the dehydration of calcium oxalate

$$\alpha = 0.50$$

$$E = (\alpha = 0.50) = \frac{E(\alpha = 0.4583) + E(\alpha = 0.5417)}{2} = 23.03 \text{ kcal mol}^{-1}$$

$$\beta_1 = 1 \text{ K min}^{-1} \text{ and } \beta_2 = 5 \text{ K min}^{-1}$$
From the system
$$\frac{1}{429.2} = a + b \ln 1$$

$$\frac{1}{449.2} = a + b \ln 5$$
(28)

it follows that

$$b = -6.4455 \times 10^{-5} \,\mathrm{K}^{-1} \tag{29}$$

and

$$\frac{\mathrm{d}\alpha^{\star}(\beta)}{\mathrm{d}\beta} = -0.2530 \frac{\alpha^{\star}(\beta)}{\beta} < 0$$
(30)

Thus, in this case

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T}(\beta) = \alpha^{\star}(\beta) \downarrow \text{ as } \beta \uparrow$$
(31)

in qualitative agreement with the experimental data.

CONCLUSIONS

(1) For the change in $d\alpha/dT(\beta)$ with the heating rate, β , at α constant, the classical model predicts only the case $d\alpha/dT(\beta) \downarrow$ as $\beta \uparrow$.

(2) The non-classical model with variable kinetic parameters predicts the previous case as well as the case $[d\alpha/dT](\beta)\uparrow$ as $\beta\uparrow$.

(3) The decompositions in solid-gas systems which occur in non-isothermal conditions can be classified according to the changes in the non-isothermal reaction rate with the heating rate at α constant.

REFERENCES

- 1 E. Urbanovici and E. Segal, Thermochim. Acta, 135 (1988) 193.
- 2 J. Šesták and G. Berggren, Thermochim. Acta, 3 (1971) 1.
- 3 E. Urbanovici and E. Segal, Thermochim. Acta, 94 (1985) 399.
- 4 E. Urbanovici and E. Segal, Thermochim. Acta, 95 (1985) 273.
- 5 E. Urbanovici and E. Segal, Thermochim. Acta, in press.