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ABSTRACT 

The classical and Boersma DTA signals produced by melting, by endothermic and by 
exothermic first-order reactions have been simulated using a simple model of a DTA 
instrument. The simulations have been related to reality by comparison with experimental 
results. The simulated DTA curves have been subjected to non-isothermal kinetic analysis 
using the Borchardt and Daniels method and the kinetic parameters derived have been 
compared with the input values. The consequences of the approximations used are discussed. 

INTRODUCTION 

There have been numerous discussions concerning the expected shapes of 
DTA curves derived from various models of DTA instruments [l-4]. The 
models used have been of varying degrees of sophistication and some of the 
more sophisticated models have permitted examination of the effects on the 
DTA curve of changes in physical properties of the sample relative to the 
reference [5]. 

Considerable attention has also been paid to the extraction of kinetic 
information from DTA responses arising from chemical reactions in the 
sample [6-lo]. Kinetic analyses, especially those done by purchasers of 
commercial software, are often uncritically based on the assumption that the 
experimental DTA curve is an acceptable starting point for analysis. There 
have been several warnings [7,10] about blindly following such procedures. 

In this discussion we start with a very simple model of a chemical reaction 
in an idealised DTA instrument and simulate the DTA responses for both 
endothermic and exothermic reactions. Most discussions of DTA deal 
explicitly or implicitly with endothermic processes and imply that the 
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treatment for exothermic processes is identical. It is important to confirm 
this as there is considerable interest in the use of DTA for the study of 
strongly exothermic processes such as the decomposition of explosives and 
the ignition of pyrotechnic compositions [ll-151. The procedure required to 
extract the kinetic and thermochemical parameters used in the simulation 
from the resulting DTA curves is then investigated. This procedure also 
involves a simulated calibration of the DTA instrument with a reference 
substance. Having shown some of the problems involved in this analysis in 
the idealised DTA instrument, we comment on the problems encountered in 
more realistic instruments. 

THE CHEMICAL REACTION 

Following most treatments, the reaction is assumed to be an irreversible 
first-order (n = 1) process, dcr/dt = k(1 - a)” (where LY is the fractional 
extent of reaction), although this is not a very realistic model for reactions 
involving solid samples. There is no fundamental reason why a more 
complex model, e.g. da/dt = ka”(1 - a)“, should not be used, provided, of 
course, that some suitable starting process is included. 

The rate coefficient, k, is assumed to show normal obedience to the 
Arrhenius equation, so that 

da/dt = A exp( -E/RT)(l - a) (1) 

where A is the pre-exponential factor and E is the activation energy. This 
assumption has also been questioned for reactions involving solids. The heat 
of reaction, Q = qm,, and the heat capacity of the sample, C, = c,m,, refer to 
the mass m, of the sample, where 4 and c, are values per unit mass, and Q 
is taken as being positive for endothermic processes. 

THE DTA INSTRUMENT 

The model used to represent a DTA instrument is shown in Fig. 1. Unlike 
real instruments, provision has been made for monitoring both the classical 
DTA signal, AT, = T,, - T, - T,, and the Boersma DTA signal, AT, = T,, - 
T, [3,4]. It is assumed, simplistically of course, that: (i) the temperature 
sensors measure the temperatures as specified without interfering with the 
system; (ii) there are no temperature gradients in the sample or in the 
reference during the programmed heating or even during the course of 
reaction in the sample; (iii) the temperature of the heat source (furnace), T,.,, 
rises at a set constant rate, +, so that T,, = To + +t where To is the uniform 
temperature of all parts of the instrument at time t = 0; (iv) energy transport 
is confined to conduction governed by Newton’s Law; (v) the heat capaci- 
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Fig. 1. Model of an idealised DTA instrument: s = sample; r = reference; SC = sample 
container; rc = reference container. AT, = classical DTA signal; ATa = Boersma DTA signal. 
H’ = thermal resistance between container and contents; R = thermal resistance between 

container and surroundings. 

ties, Cs = C, and C,, = C,, and all are independent of temperature; (vi) the 
system can be described by two thermal resistance terms: R' for heat 
transfer from sample or reference material to the corresponding container, 
and R for heat transfer from the containers to the surroundings (furnace): 
R and R' are assumed to be independent of temperature. 

MATHEMATICAL DESCRIPTION OF THE MODEL DTA 

The energy balance equations [2-41 are as follows. 
For the sample, energy changes are produced by reaction (heat of reac- 

tion, Q, taken as positive for endothermic reactions), and by heating of the 
sample by the sample container, which, in turn, is heated by the furnace. 

C,(dT,/dt) = - Q(dcu/dt) - (T, - T,,)/R' (2) 

Gc(dT,c/dt)= CT,- T,c)/R'- 6'2 M/R (3) 
Similarly for the reference side 

C,(dT,/dt) = -(T, - T,,)/R' (4) 

crc@T,c/w = CT,- U/R'- Kc- G)/R (5) 
In the simplest case, with C, = C, = C, and C,, = C,, = C, 

C,[d(T, - T,)/dt] = -Q(Wdd - [CT, - T,) - CT,, - T,)]/R’ (6) 
G[d(T,c - T,c)/dt] = [CT, - T,) - CT,, - %)1/R’ - CT,, - T,,)/R (7) 
From eqns. (6) and (7) 

Ci[d(T, - T,)/dt] = - Q@+d - G[d(L - Tc Wt] - CT,, - Cd/R 
(8) 
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and integrating with respect to time between 0 and t 

c,(T,--TJ= -Qff-C,(T,- (9) 

where $(T, - T,) dt would be the partial area, sg *, under the curve of the 
Boersma DTA signal, AT, = T, - T,,. After a suitably long time, q = 7; 
and T,, = T,, and ~y=l, so 

-Q = ~~/~~~~AT~ dt = S,/R 001 

where S, is the total area under the curve of the Boersma DTA signal. At 
any intermediate time, t, however 

a, = [ C4Tc + C#is + b~,w’R ,I /&/R > 09 

so, unless C, and C, are small 

fft f (%,t/Q (12) 

and unless these heat capacity values are available and the DTA signal in 
both classical and Boersma configurations is measured, an accurate value of 
LY cannot be calculated. 

NUMERICAL SIMULATION OF THE DTA RESPONSE 

The finite difference method is applied to eqn. (1) (da/dt) = 
A exp( - E/RT)(l - a), so that in a small time interval, At, an amount of 
reaction, Acu, will occur. AQ~ is dete~ned by the two factors: the (average} 
temperature of the sample during the interval and the kinetic model term, 

(1 - cy), i.e. 

Aa = A exp( -E;/Rq)(l - a)At 03) 

Instead of the average temperature, we have used the temperature at the 
start of the interval, At. It is assumed that initially all parts of the 
instrument are at a uniform temperature, To. 

The furnace temperature, 1;1, increases according to the set, constant, 
heating rate, (p_ So Al;, = cpAt and Th = To + IE AT,. The sample and refer- 
ence containers are then heated according to the temperature gradients 
between the furnace and the containers, the thermal resistance, R, and the 
corresponding heat capacities, C, and C,,, while the heating of the sample 
and reference materials is governed by the temperature gradients between 
the containers and the materials, the thermal resistance, R’, and the heat 
capacities, C, and C, 

A% = At [(T, - T,)/R’ - (T, - G)/Rj/C, 04) 

Air, = At[(T, - 3”,)/R’ - (T, - G)/R]K~ (15) 



383 

and 

AT, = [ - QACX - At( T, - T,,)/R’]/C, (16) 

AT, = [ -At(T, - T,)/R’]/C, (17) 

By keeping track of T,, T,, T,, and T,, it is possible to calculate the classical 
DTA signal, T, - T,, or the Boersma DTA signal, T,, - T,,, at any time, or 
referred to any of the above temperatures or the furnace temperature, T,,. 

Simulated DTA responses were output to files using programs in 
GWBASIC and a MICROSOFT BASIC compiler. Double precision varia- 
bles were used where necessary and time intervals used for calculations were 
as small as 0.2 ms. Significant errors, particularly in area measurements, 
were introduced by decreasing the resolution. The output files were ex- 
amined further in spreadsheet form, using LOTUS 123. 

SIMULATION OF INSTRUMENT CALIBRATION 

To calibrate the idealised DTA instrument, i.e. to determine the value of 
R in the expression Q = S/R, it was necessary to simulate the melting of a 
standard, e.g. indium metal, under the same idealised conditions. 

The sample and reference were again regarded as being identical except 
that the sample melted at T,. When T, < T,, AT, = 0 and (Y = fraction 
melted = 0. When T, > T,, T, = T, until (Y = 1 (melting complete). 

The equations used in the simulation were those used before, except that 

ACY = At( T, - T,,)/( R’Q) (18) 

and the sample container was heated, as before, by the furnace. 

THE THERMAL RESISTANCES, R AND R’ 

To obtain realistic simulated DTA curves, it was necessary to use realistic 
values of R and R’. 

Normally a value of R would be obtained by calibration of an actual 
DTA instrument 

Qcalibrant = S/R (1% 
For a heat-flux DSC instrument, the actual value of R is often less 
accessible. 

An experimental heat-flux DSC curve for the melting of 6.6 mg of indium 
metal, heated at 20 K min-’ in a silica-glass crucible (94.9 mg) in a 
Stanton-Redcroft DSC 1500, is shown in Fig. 2, solid line. 

Several melting curves were simulated with the parameters listed in Table 
1 and various combinations of R and R’ (assuming R > R’) and these 
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Fig. 2. Experimental heat-flux DSC curve (solid line) for the melting of 6.6 mg of indium 
heated at 20 K min-’ in a silica-glass crucible (94.9 mg), compared with a simulated curve 
(dashed line) for R =116 K s J-i and R' = 50 K s J-‘. 

curves were compared with Fig. 2, solid line. Satisfactory agreement was 
achieved with R = 116 and R' = 50, as shown in Fig. 2, dashed line. 

Once a value of R has been guessed for the experimental curve, the 
appropriate value of R' may be obtained from the relationships below 

G[d(L - T,,)/dt] = (L - C&R - CT, - T,)/R’ - CT,, - L)/R (20) 

so 

G,[d(T, - L)/dt] + CT,, - T,)/R = [CT,, - T,,) - CT, - T,)]/R’ (21) 

TABLE 1 

Melting of indium 

Indium 
Mass = 6.60 mg 
Atomic mass =114.8 g mol-’ 
AHfusion = 28.5 J g-’ 
Heat capacity = 0.2343 J K-’ g-’ 

Q/C = 121.6 K 
T,, = 429.6 K 
Q=28.5x6.60x10-3=0.1881 J 
C,=0.2343x6.60x10-3=1.55x10-3 JK-’ 

Silica-glass crucible 
Mass = 94.9 mg 
Heat capacity = 0.753 J K-’ g-’ 

Platinum sensor 
Mass = 91.96 mg 
Heat capacity = 0.150 J K-’ g-’ 

Cs, = C,, = 0.0715 +0.0138 = 0.085 J K-i 
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Before melting, (T, - T’) is very small. When T, = T,, let t = 0, then at any 
later stage during melting, T, = T, and T, = T, + (Pt, so 

Gc[d(T,c - T,c)/dtl + 6% - T,)/R = [(T,c - T,) - (Tm - T, - +t)]/R’ 

= [(T,, - T,,) + WI/R' (22) 
and the heat-flux signal is converted to the Boersma DTA signal by 
multiplying by R. Thus a plot of the left-hand side of eqn. (22) against the 
quantity in square brackets, should (and does) give a straight line of 
slope = l/R’. 

SIMULATION OF CHEMICAL REACTION 

Several authors [16,17] have described the effects of varying parameters 
such as E, A and the heating rate, cp, on the shape of DTA curves. In 
general terms, increasing the value of E and/or decreasing the value of A, 
shifts the temperature range over which the reaction rate is measurable to 
higher values. We have not varied these parameters in this study, except (see 
below) where they may influence kinetic analyses. 

ENDOTHERMIC DECOMPOSITION 

The parameters, chosen rather arbitrarily, for our simulation are given in 
Table 2. The resulting DTA signals (classical and Boersma) are shown in 
Fig. 3. Division of the classical signal by R + R’ and the Boersma signal by 
R gives a single heat-flu DSC signal. 

TABLE 2 

Reaction parameters 

Reaction order n = 1 
Activation energy E = 100000 J mol-’ 
Pre-exponential factor A = 1 X 10’ s-l 
Q/C, = 5000 K 
Q=25J 
R =116 K s J-’ 
R'=50 KsJ-’ 
C, = C, = 0.005 J K-’ 
C, = C, = 0.085 J K-l 
Heating rate I$ = 20/60 K s-l 
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Fig. 3. Simulated DTA signals for an endothermic reaction with the input parameters given in 
Table 2: -, Boersma DTA; - - -, classical DTA. (The abscissa is the reference 
container temperat~e.) 

EXOTHERMIC REACTION 

The DTA signals co~espo~ding to Fig. 3, with the sign of Q reversed for 
exothermic reaction, are shown in Fig. 4. It is immediately evident that the 
two sets of curves are not mirror images and this is confirmed by the altered 
shape of the (a, t) curve for exothermic reaction, Fig. 5, curve a, compared 
to endothermic reaction, curve b. 

This set of parameters is close to the limits beyond which thermal 
runaway [15] is likely to occur under the conditions represented. Runaway 
can be caused by increasing A and/or decreasing E, or increasing the 
thermal resistances R and/or R'. 

!O 

Temperature lK) 

Fig. 4. Simulated DTA signals for the exothermic reaction corresponding to Fig. 3 and Table 
2, with the sign of Q reversed: - Boersma DTA; - - -, classical DTA. (The abscissa 
is the reference container temperature.) 
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Fig. 5. Extent of reaction, a, vs. reference container temperature: - , exothermic reaction 
(Fig. 4); - - -, endothermic reaction (Fig. 3). 

EXTRACTION OF KINETIC INFORMATION FROM DTA CURVES 

Any kinetic analysis requires sets of values of the fractional extent of 
reaction, (Y, at some time, t, at which the sample temperature was T,. 
Calculation of (Y at time t, even in the idealised DTA instrument, strictly 
requires more than the determination of the partial area under the DTA 
curve up to that time. As discussed above, for the idealised Boersma DTA 

(23) 

so that both the classical and Boersma signals are required, but normally 
only AT, is available. In most experimental situations, C,( = C, = C,) < 
C,( = C,, = C,) while AT, > ATB_ If R is small, both DTA signals are small, 
so that the correction terms are small and (Y, = s,,,/S,. 

The areas s or sa and S or S, are obtained by integration of the DTA 
signal as a function of time. If they are obtained by integration of the DTA 
signal as a function of the programmed temperature and corrected by 
scaling by the heating rate, 9, further errors may be introduced through 
deviations from true linearity of the programmed heating. 

THE TEMPERATURE, T 

The DTA signals, AT, or AT,, could be displayed as a function of t, or of 
the programmed temperature (T, or T,,), or, conceivably, as a function of T, 
or T,, which distorts the time base required for area determination (see 
above). The temperature which determines the rate of reaction is, obviously 
the actual sample temperature, T,, and, unless this is known, any kinetic 
analysis must be in error, e.g. in Boersma DTA (heat-flux DSC) it is 
assumed that T,, = T,, while in some software packages the reference tem- 
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perature, T, or T,, is used on the assumption that T, + AT, = T, (or 
T,+AT,= T,). In the extreme case, it is possible that the furnace tempera- 
ture, T,, could be used as the abscissa. 

THE KINETIC ANALYSIS 

Numerous methods have been proposed for kinetic analysis [6,10]. These 
are usually divided into differential or integral methods, depending upon 
whether they use measurements of (da/dt) or not. Differential methods 
applied to DTA curves generally assume that the DTA signal, AT, or ATB, 
is proportional to da/dt, as well as the general assumption, discussed 
above, that (Y = s/S. 

As the assumptions made in the systems simulated above are similar to 
the assumptions made by Borchardt and Daniels [6], the BD method was 
used to analyse the simulated DTA curves. The BD method is a specific case 
of a more general analysis considered by Sharp [7] and others, and it is used 
in several commercially available software packages. The method involves 
calculating first-order rate coefficients 

k = (da/dt)/(l - a) (24 

on the assumption that the available DTA signal, AT, or AT,, is a measure 
of da/dt, and that (1 - a) is proportional to (S - s), or (S, - s,,). So 

k=IF,AT,/(S-s) (25) 

or 

k = FBATB/( SB - sB) (26) 
where & and FB are appropriate scale factors. The slope of an Arrhenius 
plot of In k against l/T should then yield the activation energy, E. The 
intercept contains the scale factor, Fc or FB, in addition to the pre-exponen- 
tial factor, A. 

The procedure can be made general by assuming an order of reaction, n, 
and plotting ln( AT) + n ln( S - s) against l/T for various values of n. 
Alternatively, instead of assuming g(a) = (1 - CX)~, any of the other func- 
tions g(a) used in solid-state reactions [18] could be tested for suitability. 

We have not complicated matters further by considering those methods of 
kinetic analysis based on comparison of features, such as peak maximum 
temperatures, of several DTA curves recorded at different heating rates. 

When the BD method was applied to the endothermic reaction shown in 
Fig. 3, the kinetic parameters listed in Table 3 were obtained. The correc- 
tions to CY were small and even use of the incorrect temperatures did not 
introduce significant errors in the parameters. Note that the maximum 
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TABLE 3 

Kinetic analysis (Borchardt and Daniels) of the endothermic reaction (Table 2). Input: 
~=lOOOOOkJmol-‘; A=1x107s-‘; +=20/60Ks-‘; R=116KsJ-‘; R’=50KsJ-‘; 

Q = 25.00 J; In A = 16.12 

T scale used E (kJ mol-‘) Intercept In A r* 

Sample 100.61* 0.05 24.08 f 0.02 16.11+0.02 0.99984 
Sample container 97.95 f 0.05 23.40 f 0.02 15.43 + 0.02 0.99986 
Furnace 93.36 + 0.14 22.06 + 0.07 14.09 * 0.07 0.99876 

Area (DSC) = 24.99 J 

True (Y = 0.501 
Fractional area = 0.462 
Correction = 0.039 
Corrected 01 = 0.501 

TABLE 4 

Kinetic analysis of the exothermic reaction. Input: E =lOO.OOO kJ mol-‘; A =1.000X 107 
s-l; $,=20/6OKs-‘; R=116KsJ-‘; R’=50KsJ-‘; Q=-25.00J;lnA=16.12 

T scale used E (kJ mol-‘) Intercept In A r2 

Sample 100.8+0.1 24.11 f 0.06 16.14 + 0.06 0.99938 
Sample container 102.6 k 0.2 24.58 &- 0.10 16.61 f 0.10 0.99837 
Furnace 107.8 f0.6 25.80 f 0.29 17.83 f0.29 0.98466 

Area = 24.99 J 

True (Y = 0.5000 
Fractional area = 0.427 
Correction = 0.073 
Corrected OL = 0.500 
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Fig. 6. Arrhenius plots for the exothermic reaction of Fig. 4, using the Borchardt and Daniels 
method (n = 1): a, furnace temperature, T,,; b, sample container temperature, T,,; and c, 
sample temperature, T,. 
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Fig. 7. Arrhenius plots for the exothermic reaction of Fig. 6, using different orders of 
reaction, n: a, n =l; b, n = 2/3; c, n = 0. (The abscissa refers to the sample container 
temperature). 

values of the DTA signals were about - 15 K (classical) and - 10 K 
(Boersma) or -86 mW (DSC). 

Kinetic analysis of the analogous exothermic reaction, Fig. 4, gave the 
values of E and the intercepts listed in Table 4. The errors in the calculated 
value of E are larger than for the endothermic reaction (Table 3). The 
absolute values of the m~mum DTA and DSC signals were sig~ficantly 
greater than those for the endothermic reaction (30 K (classical) and 21 K 
(Boersma) or 180 mW (DSC)). 

The Arrhenius plots using the furnace temperature, the sample container 
temperature and the sample temperature are shown in Fig. 6. 

The sensitivity of the analysis to the kinetic model selected was tested by 
drawing Arrhenius plots (using the sample container temperature) for the 
contracting volume model (n = 3) (Fig. 7, curve b), and the zero-order 
model (n = 0) (Fig. 7, curve c). The deviations from the expected plot 
shown, curve a, are not large especially, as expected, at low T and low CL 

CONCLUSIONS 

The theoretical basis of DTA has been extensively discussed over many 
years. Much attention has been directed to the effects of the physical 
properties of the sample, relative to those of the reference, on the shape of 
the DTA curve. Calorimetric aspects of DTA have generally received more 
attention than kinetic aspects, although kinetic analysis of DTA curves is a 
fairly routine procedure. 

In this study, it has been shown that even before details of the fine 
structure of the DTA system, such as temperature gradients within the 
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sample and reference materials, and the variation of thermal properties with 
temperature, are considered, there are potential problems in extracting 
kinetic information from DTA or heat-flux DSC curves. 

If such problems exist in the most idealised of instruments, they will 
certainly be more severe in real instruments and need to be considered even 
ahead of the added complexities of real reactions such as the effects of 
particle size, sample disposition and influences of the prevailing gaseous 
atmosphere [lo]. 

The simulations and discussion above confirm [2] that there is generally 
little problem in obtaining values of the heats, Q, of endothermic processes 
from measurements of the total area under a DTA (classical or Boersma) 
curve. 

For exothermic processes, the DTA signal is distorted, at least to a small 
extent, by the fact that the DTA instrument (or heat-flux DSC) is a 
temperature-measuring device, in contrast to power-compensated DSC which 
measures energy [ 21. 

When the energy produced by reaction in the sample during a given time 
interval is less than that available from the furnace to the reference during 
the same time interval, the furnace supplies the energy required by the 
sample for the balance of the temperature rise and AT = 0. The energy 
release by the sample does not therefore show up as a temperature dif- 
ference, because the full quota of energy cannot be transferred from the 
furnace, Th, to the sample, if T, > Th. T thus remains zero in spite of the 
occurrence of a small amount of reaction, and the total area under the DTA 
curve will be an underestimate of Q, especially when the reaction is slow 
and/or Q is not a large exothermic value. 

From the above it can be seen that if the total area of an exothermic DTA 
peak is not a true reflection of Q, then the usual assumption in kinetic 
analysis that (Y = partial area = s/S is not valid for exothermic reactions, 
except perhaps where reaction is rapid and Q is large. Under these condi- 
tions, though, the more complex factors of real DTA systems, such as 
temperature gradients within the sample, the responses of temperature-mea- 
suring systems and the cooling possible in an instrument, introduce their 
own distortions. 

Many kinetic analyses of DTA curves not only ignore the possibility of 
errors in the determination of IX, but also incorporate an inexact temperature 
in the Arrhenius equation. The use of the Arrhenius equation is an assump- 
tion which has itself often been challenged [10,19]. In the idealised systems 
considered above, the only temperature which actually governs the rate of 
reaction in the sample is, obviously, the actual sample temperature, T,. In a 
Boersma DTA, the closest available quantity to T, is T,,. Use of T,, in the 
analysis thus inevitably introduces some error. If, instead of using T, or T,, 
in a kinetic analysis, T, or T, were to be used, on the assumption that AT, 
or AT, were small, a further error is introduced. 
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It is worth noting that areas s, sg, S and SB must be determined on a 
time base (or in terms of the programmed temperature, T, or T,, and the 
heating rate, +, but obviously not in terms of q or T,,). 

In spite of the above reservations, typical procedures for extraction of 
kinetic information from DTA curves, exemplified by the Borchardt and 
Daniels (BD) method [6], are not very sensitive to small errors in (Y and in 
temperatures used in Arrhenius-type plots. 

In real instruments, provided that the heat capacity and thermal resis- 
tance terms have reasonably low values, DTA signals are not large, except 
for very rapid reactions with large Q values, and values of activation 
energies, E, recovered from realistic simulations are within a few per cent of 
the input values. It is more difficult to recover the A values on account of 
the instrumental scale factors. Values of E are not very sensitive to the 
kinetic model assumed and, where the Arrhenius plot deviates from linear- 
ity, the early stages of the DTA curve, i.e. low T and low (Y, should, in most 
cases, be given the most weight in determining the slope. In general, the 
assumption that (Y = s/S introduces errors, which may be small, but should 
at least be considered . 

For accurate kinetic measurements in a Boersma DTA, it is necessary, 
both for the calculation of (Y and for the Arrhenius plot, to have access to 
the actual sample and reference temperatures, T, and T,. 

It is useful, for any real instrument, to have some idea of both the thermal 
resistances R and R’, even if these are composite quantities and are 
temperature dependent. For heat-flux DSC instruments, the simulation of a 
curve to match an experimental curve, as described above, can lead to the 
required information. 

The actual value of R’ determines the difference between the classical and 
Boersma DTA signals and hence provides a way of correcting from T,, to T, 
for kinetic analysis. 

In a further paper [14], we will describe the simulation of the DTA 
response to very rapid exothermic processes using a two-dimensional finite- 
element model. 
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