Note

ON THE EXISTENCE OF A MAXIMUM IN THE REACTION RATE FOR THE NON-ISOTHERMAL AUTONOMOUS ADIABATICALLY ISOLATED REACTIONS OF THE TYPE $aA \rightarrow$ **PRODUCTS**

E. URBANOVICI

Research Institute for Electrotechnics, Sfintu Gheorghe Branch, Str. Jozsef Attila Nr. 4, Sfintu Gheorghe, Județul Covasna (Romania)

E. SEGAL

Department of Physical Chemistry, Faculty of Chemistry, Polytechnic Institute of Bucharest, *Bulevardul Republicii 13, Bucharest (Romania)*

(Received 6 December 1989)

In a previous paper [l], we analysed reactions of the type

 $aA \rightarrow$ products (1)

whose non-isothermicity is due only to the fact that their thermal effect occurs in adiabatically isolated conditions. Such reactions have been described as non-isothermal autonomous adiabatically isolated. For such reactions

$$
T = q(\alpha) \tag{2}
$$

The most usual explicit form of relationship (2) is

 $T = T_0 + q_0 \alpha$ (3)

To being the initial temperature, and

$$
q_0 = aQ/C \tag{4}
$$

where Q is the thermal effect (exothermic or endothermic) corresponding to one mole of A considered as constant, *a* is the number of moles of reactant A and C is the heat capacity of the system, considered as constant.

The rate equation for the considered reaction is

$$
d\alpha/dt = Af(\alpha) e^{-E/R(T_0 + q_0\alpha)}
$$
\n(5)

We shall assume constant kinetic parameters, namely

 $A =$ const. (6)

 $E = \text{const.}$ (7) \sim \sqrt{n}

$$
f(\alpha) = (1 - \alpha)^{\top}, \qquad n = \text{const.} \tag{8}
$$

i.e. classical conditions [2].

Considering the second derivative of α with respect to t

$$
\mathrm{d}^2\alpha/\mathrm{d}t^2 = A e^{-E/R(T_0 + q_0\alpha)}\mathrm{d}\alpha/\mathrm{d}t \Big\{f'(\alpha) + f(\alpha)\Big[Eq_0/R(T_0 + q_0\alpha)^2\Big]\Big\} \tag{9}
$$

From the condition of the maximum of the reaction rate

$$
\mathrm{d}^2\alpha/\mathrm{d}t^2 = 0\tag{10}
$$

one obtains

$$
f'(\alpha_{\rm m}) + f(\alpha_{\rm m}) \left[E/R \left(T_0 + q_0 \alpha_{\rm m} \right)^2 \right] q_0 = 0 \tag{11}
$$

where the subscript m denotes maximum. For $f(\alpha)$ given by eqn. (8), eqn. (11) takes the particular form

$$
-n(1-\alpha_{m})^{n-1} + (1-\alpha_{m})^{n} \left[Eq_{0}/R(T_{0} + q_{0}\alpha_{m})^{2}\right] = 0
$$
\n(12)

or, after performing the calculations and rearranging the terms

$$
\alpha_m^2 + (2x + y)\alpha_m + x^2 - y = 0 \tag{13}
$$

where

$$
T_0/q_0 = x \tag{14}
$$

and

$$
E/Rq_0n = y \tag{15}
$$

It should be noted that the determination of a maximum reaction rate is meaningful only for exothermic reactions which take place via a temperature increase, i.e for $q_0 > 0$. For endothermic reactions, the temperature decreases with time and, accordingly, the reaction rate decreases.

For exothermic reactions, the solution of eqn. (13) is

$$
\alpha_m = \left[-(2x + y) + (y^2 + 4xy + 4y)^{1/2} \right] / 2 \tag{16}
$$

The degree of conversion corresponding to the maximum reaction rate is submitted to two more conditions, namely

$$
\alpha_{\rm m} > 0 \tag{17}
$$

which gives

$$
y > x^2 \tag{18}
$$

and

$$
\alpha_{\rm m} < 1 \tag{19}
$$

which gives

$$
0 < (x+1)^2 \tag{20}
$$

Taking into account relationships (14) and (15), inequality (18) leads to

$$
\frac{E}{Rq_0 n} > \frac{T_0^2}{q_0^2}
$$
 (21)

i.e.

$$
\frac{Eq_0}{Rn} > T_0^2 \tag{22}
$$

or, taking into account relationship (4)

$$
\frac{EaQ}{RnCT_0^2} > 1\tag{23}
$$

This inequality could be treated as a condition for the existence of a maximum reaction rate for non-isothermal autonomous adiabatically isolated reactions.

REFERENCES

- 1 E. Urbanovici and E. Segal, Thermochim. Acta, 125 (1988) 261.
- 2 E. Urbanovici and E. Segal, Thermochim. Acta, 135 (1988) 193.