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ABSTRACT 

A method to obtain high precision solutions of the temperature integral is presented. Most 
of the approximation functions are rational. The approximations are competitive with others 
given in the literature. 

INTRODUCTION 

In order to describe kinetically reactions which occur in non-isothermal 
conditions, the classical equation is used [1,2] 

with 

f(a) = (1 - cu)“C[ -ln(l - QI)] ’ 

and the “classical” conditions 

A = constant 

E = constant 

n = constant, IM = constant, p = constant 

In eqn. (1) and relationships (2)-(5) the parameters 
ing. 

(2) 

(3) 
(4) 
(5) 

have their usual mean- 

The classical case can be generalized for a pre-exponential factor which 
depends on temperature, i.e. 

A = A,T’ (A, = constant, r = constant) (6) 
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Equation (1) with the pre-exponential factor given by eqn. (6) becomes 

da -= 
dT 

$ T’f(a) e-WRT (7) 

(The use of a temperature-dependent pre-exponential factor does not violate 
the classical conditions. As shown in our previous paper [l] non-classical 
conditions indicate dependence of the kinetic parameters on conversion.) 
Equations of the form (1) and (7) can be obtained from the isothermal 
differential kinetic equation 

$ = A,T’f(a) e-E/RT (T = constant) 

(considered as the postulated primary isothermal differential kinetic equa- 
tion (P-PIDKE) [3-51) by applying the classical non-isothermal change 
[3-51, the temperature being given by 

T= T,+pt (/3 = constant) (9) 

The following considerations are valid for a constant heating rate. 
Equation (7) through variable separations and subsequent integration 

leads successively to 

s = !j T’ e-E/RTdT 

$1_& = $tjT~y’ e-WK~dy 

The integral from the right-hand side of eqn. (11) can be written as 

J 
r, 

Yr e -E/R.v dy = J 
T? yr e-E/R.v 

T, 0 
d y _ iTlyr e-&‘R” d y 

(10) 

(11) 

(12) 

Thus to solve the integral from the right-hand side of eqn. (11) we must 
solve the integrals of the form JoTy’ e- E/RY d y, which are frequently met in 
non-isothermal kinetics [6] and are called temperature integrals. 

THEORETICAL ASPECTS CONCERNING THE APPROXIMATE SOLUTION OF THE 
TEMPERATURE INTEGRAL 

In the literature, two techniques have been employed to solve the temper- 
ature integral approximately: (a) the use of series for approximation [6-141 
and (b) the use of approximate formulae for the temperature integral. Case 
(b) is discussed here. It should be emphasized that the temperature integral 
cannot be solved exactly. 

To obtain an approximate solution of the temperature integral, let us 
suppose that 

T 

Y' e --E/R.v d y = ; Tr+2 
(13) 
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Taking the derivative of eqn. (13) with respect to T we obtain 

where Q:( E/RT) is the derivative with respect to the variable E/RT. From 
eqn. (14) after performing the calculations, we obtain 

Q;(j$)-(l+G)Qr(j$)+‘=O 

Equation (15) with the notation 

E 
X=RT>O 

(15) 

06) 

becomes 

Q;(x) - (1 + +)Q,(x) + 1 = 0 (r-20) (17) 

The differential equation (17) does not have an exact solution and from the 
information standpoint is equivalent to approximation (13). Thus to solve 
the temperature integral approximately we must find an approximate solu- 
tion for differential equation (17) where 

O-C Q,(x) ~1 (18) 
We propose a solution of the form 

Qb, P(X), c,) (19) 

with 

i=l, 2,..., N (20) 

where p(x) is a parameter which depends on x and changes smoothly with 
it and cI, c2,. . . , c,,, are constants. 

To approximate p(x) we must introduce eqn. (19) into eqn. (17). We 

obtain 

aQ,(x, p(x), c,) + aQ,(x, P(X), c~) ddx) 
ax aP (4 dx 

- 1+ 
i 

$)Q&, P(X), cl) + 1= 0 (21) 

A first approximation for p(x), po( x, c,), corresponds to the case for which 
the term 

aQ,(x, P&G c,)c,) ~PO(X, ~1) 
aP& Cl> dx (22) 
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can be neglected in eqn. (21). In such conditions 

@,(X> Pob, CJCJ 
ax -(1+?) er(x, Po(X* 44 + 1 =o (23) 

Taking into account this result, pO(x, c,) is obtained as the solution of an 
algebraic equation. Introducing pO( x, c,) into eqn. (19) the approximation 

Qrb, PO(X, 4, c,> (24) 

is obtained. 
The procedures to determine the constants ci, c2,. . . , cN are given below. 

In some simple cases, function (19) should not contain the constants c,. 

APPLICATIONS 

In this section, some applications of eqn. (23) and the corresponding 
particular forms of function (24) for five values of Y (0, i, 1, : and 2) are 
presented. The approximations are checked by calculating the value of 
Q,(x) for values of x of 5, 10, 20, 30, 40, 50, 75 and 100 and determining 
relative percentage error with respect to numerically evaluated Q,.(X) values. 
The Q,.(x) values obtained via numeric procedures using relationship (13) 
are given in Table 1. 

As the Q,(x) values in Table 1 are given with a precision of f 2 X 1O-7 
and the Q,.(x) values calculated for various approximations are compared 
with those in Table 1, a relative error lower than (2 X lO-7/Q,.(x)) X 100 is 
not significant. Values of the relative percentage error er which do not fulfil 
the condition 

Icrl 2 
2 x lOF5 

Q,(x) 
are given by = lop5 or = -10-5. 

TABLE 1 

Values of the function Q,(x) for various values of x and r a 

(25) 

Number X Q(x) 
5 0.7394456 

10 0.8436667 
20 0.9125819 
30 0.9392349 
40 0.9534159 
50 0.9622251 
75 0.9743459 

100 0.9805772 

PI/Z(X) Q,(x) Q3/2(x) Qz(x) 

0.6928382 0.6513860 0.6143237 0.5810234 
0.8115484 0.7816671 0.7538065 0.7277768 
0.8929838 0.8741822 0.8561305 0.8387868 
0.9251512 0.9114731 0.8981838 0.8852674 
0.9424266 0.9316828 0.9211763 0.9108997 
0.9532157 0.9443707 0.9356855 0.9271562 
0.9681345 0.9620008 0.9559435 0.9499611 
0.9758379 0.9711437 0.9664938 0.9618880 

a Values are given with a precision of k 2 x lo-‘. 
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TABLE 2 

Coefficients a, in relationship (26) [15] 

r a2 

0 - 2.0 4.0 - 10.0 30.0 

I -2.5 6.25 - 18.125 61.563 
i - 3.0 9.0 - 30.0 114.0 
i 

; -3.5 - 4.0 12.25 16.0 
- 
- 46.375 68.0 190.985 314.0 

Table 2 contains the coefficients a 

Q,(x)=l+&+ (x+l;lix+2) 

I a4 

for the following form of Q,(x) [15] 

+ (x+1)( 

a3 

x + 2)(x + 3) 

T (x + 1)(x + 2)(x + 3)(x + 4) (26) 

which is used for comparison. In Table 3 some functions Q(x) (Y = 0) taken 
from the literature are also given for comparison. Table 4 contains our 
approximations Q(x) (r = 0) and Tables 5-8 contain our approximations 

Q,.(x) (r= t, 1, 5, 2) in comparison with Q,(x) given by eqn. (26). 
l In the following we describe the new approximations proposed in this 

work. 

Case 1 

44 
Qrb, P(X), c,) = l+ y-- 

The particular form of eqn. (23) is 

From eqn. (28) we obtain 

(r+2)x 
a,(x)= - x+r+3 

Thus 

Q,(x)= x+1 
x+r+3 

or 

(27) 

(27a) 

(28) 

(29) 

(30) 

(31) Qh)=l- ,:‘;f, 
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TABLE 3 

Q(x) (r = 0) approxmutmns taken from the literature 

Approxl- Q(x,(r=O, Deg- Reference x 
mation ree ,’ 

5 10 

1 

2 

3 

4 

8 

9 

10 

11 

12 

13 

14 

1 0 
x-2 

1 
x 

h 

x+2 
1 

x+1 
x+3 

1 

1 

(1 +4/x)‘.’ 

x2 - 2.x 

~‘-6 
2 

.x1 - 2x 

x’-5 
2 

0.995924.~’ + 1 430913x 

x1 + 3 330657x + 1.681534 
2 

x’+4x 

xZ+6x+6 
2 

x1 + 10x’+ 18.x 

x’ + 12x’ + 36x + 24 
3 

xJ+18x’+88.~‘+96x 

xJ + 20x’ + 120x + 240-y + 120 
4 

x’ - 4x’ + 84.x’ 

(x + 2)(-r’ -4x’ + 84.x - 16) 
4 

xJ + 6 055.x’ - 57.412.~’ - 674 567.x 

xJ + 8.021’ - 49.313~’ -841.655x - 1699.066 
4 

01 u2 
l+x+ (x+1)(.x+2) +... 

u4 

+ (x + 1)(x + 2)(x + 3)(r + 4) 
4 

[16-19,251 

[8,11,16- 

21.251 

[8.11,18,19, 

21.22.251 

[23]. this 

work 

(eqn. (32)) 

[11,19,25] 

[18,24.25] 

U8.251 

L21.251 

C8.21.251 

I8.21.251 

[21,26-281 

L8.25.291 

F3.301 

1151, thw 

work 
(Table 2) 

35.23 18.53 

- 18.86 -5.18 

- 3.40 - 1.22 

1.43 0.295 

0.799 0.176 

6.77 0.877 

1.43 -0 185 

- 0.028 -0.015 

- 0.235 - 0.035 

- 0.024 - 0.0016 

0.905 0.532 

0.200 -0.115 

0.354 0.028 

” The degrees of the polynom~& from the numerator and denommator of the fractmn arc gwen 

For the most important case with r = 0, 

Case 2 

Pr(x, PC4 4 = 1+ x4b 

p(x) = a(x), i = 1, cl = b 

(32) 

(33) 

(34) 
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20 30 40 50 15 100 

9.58 6.41 4.89 3.93 2.63 1.98 

- 1.38 - 0.628 -0358 - 0.231 -0.104 - 0.059 

-0.383 -0.185 -0.109 - 0.071 -0.033 -0.019 

0.051 

0 032 

0.123 0.039 0.017 0.009 0.003 0.001 

- 0.130 - 0.073 - 0.046 - 0.031 -0.015 - 0.009 

- 0.086 -0.157 - 0.204 - 0.236 -0.285 -0.312 

- 0.004 -8.9 x lo- ‘I -3.3 x 10. 4 -1.4x lomJ -4x lo- 

-1.6 x 10 ’ = 2 xlomy = -10-5 llOrn‘ i 

0.057 0.235 0.131 0 083 0.028 

-0.185 -0.123 -0082 -0.058 - 0.029 

-2x10- 

-lO_ 5 = 

0.017 

-0.017 

1.375 0.492 0.266 0.174 0.087 0.056 

0.017 

0.011 

0.008 

0.005 

0.004 

0.003 

0.001 

9x 10 

5x10 a 

J 4x 10-4 

0.002 2.9 x 10m4 7.3 x lo- ( 3.1 x lo- ( =10-T a -lo- 

For this case, eqn. (23) takes the form 

,:$xbi2 -(1+~)(1+~)+1=0 

whose solution is 

(r + 2)(.x + b)2 

00(x) = - [x + (x + b)(x + r + 2)] 

From eqns. (33) and (36) we obtain 

Qh, b) = 
x2 + x(b + 1) 

x2+x(b+r+3)+b(r+2) 

(35) 

(36) 

(37) 
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For 

b=3 (38) 

Q,(x) = 
x2+4x 

x2 + x(6 + r) + 3( r + 2) 
(39) 

Approximation (39) leads to satisfactory results. Nevertheless, as eqn. (33) is 
suggested by a relationship of the form of eqn. (31) we propose 

b=3+r (40) 

Thus from eqn. (37) 

Q,(x) = 
x2 +x(4 + r) 

x2+x(6 + 2~) + (r-t 3)(r + 2) 

For r = 0, approximations (39) and (41) lead to 

Q(x) = 
x2 + 4x 

x2+6x+6 

which is well known in the literature [8,21,25]. 

Case 3 

Qrk P(X)* d = 1+ x+;(x) 

(41) 

(42) 

(43) 

p(x) = b(x), i = 1, c, = a 

By writing the particular form of eqn. (23) solving it with respect to b(x) 
and introducing the result into eqn. (43) we obtain 

2-a 
Q,(x, a)=T- 

&+ a(a-2)(r+2) + a*(r+2)* “2 
2x 4x2 I 

(44) 

As eqn. (43) is suggested by a relationship of the form of eqn. (31). we 
propose 

a = -(r + 2) (45) 

In this case relationship (44) becomes 

Q,(x) = 1+ 
r:?(I I r;2 [,, 2(r:4) + (r~~)*~*j 

(46) 

The results obtained using eqn. (46) are given in Tables 4-8. 
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Case 4 

b(x) 
Q,(x, P(X), c,) = I + !j + 7 (47) 

Applying the usual procedure we obtain 

Q,<x~ 4 = 
x*+2x+a 

x*-t (r+4)x 
(48) 

a= -(r+2) (4% 

Q,(x) = 
x2 + 2x - (Y + 2) 

x2+ (r+4)x 
(50) 

The results obtained using eqn. (50) are given in Tables 4-8. 
The following cases with a more complicated procedure are presented for 

r=o. 

Case 5 

Let us suppose that for r = 0 

Using the values of Q(x) given in Table 1 in eqn. (51) 

x +P(x> 
x+p(x)+2 

= Q(x) 

and solving this equation with respect to p(x), we obtain 

2Qb) dx> = 1 _ Q(x) -x (53) 

In this way, the values of p(x) can be estimated for the eight values of x 
given in Table 1. Using the least-squares method [31,32], an approximation 
of the form 

P(X) = g& 
2 

c, = constant, c2 = constant 

was employed. After performing the calculations, we obtain 

and thus 

Q(x) = 
x2 + 3.5x 

x2+5.5x+5 

(54) 

(55) 

(56) 
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The results obtained using eqn. (56) are given in Table 4. 

Case 6 

Considering that b = b(x) in eqn. (37) we obtain 

e(xv b(x)) = 
x2+x(b(x)+1) 

x’+x(b(x)+3)+2b(x) 
(57) 

Using the eight values of Q(x) given in Table 1 and solving an equation of 
the form 

x2 + x(b(x) + 1) 
x*+x(b(x)+3)+2b(x) 

= Q(x) 

with respect to b(x), we obtain 

b(x) = 
(x2 +x)(1 - Q(x)) - 2xQb> 

-x(1 - Q(x)) + 2Q(x) 

For instance, if x = 10, b(lO) = 2.6075. 
An approximation of the form 

b(x) = s 
2 

was employed. Using the least-squares method, we obtain 

b(x) = 
2.9712x 

x + 1.3757 

(58) 

(59) 

(60) 

(61) 

Introducing this result in eqn. (57) leads to the following approximation for 

Q(x) 

Q(x) = 
x2 + 5.347x + 1.376 

x2 + 7.347x + 10.069 
(62) 

The good results obtained using approximation (62) are given in Table 4. 

DISCUSSION 

The rational approximations for Q(x) given in this work are of the form 

Q,(x)=% (63) 

where q,(x) and q*(x) are polynomials of the same degree. The degree of 
the polynomials gives the degree of the rational approximation for Q,(x). 
The higher the degree of the rational approximation, the more complicated 
Q,(x) becomes and thus the calculations increase in complexity. 
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In addition to the rational approximations, relationships such as eqn. (46) 
or number 5 in Table 3 are proposed. Special emphasis is given to the 
approximate functions Q(x) (Y = 0). 

From the data given in Tables 3 and 4, we can make the following 
observations: 

(1) the best rational approximation of the first degree is approximation 4 
in Table 3; 

(2) the best rational approximation of the second degree is approximation 
3 in Table 4; 

(3) the best approximation is approximation 10 in Table 3 followed by 
approximation 3 in Table 4; 

(4) approximation 9 in Table 4 is very simple and gives good results; 
(5) approximation 4 in Table 4 also gives good results; 
(6) approximations 11, 12 and 13 in Table 3 do not give as good results as 

approximations 10 in Table 3 and 3 in Table 4; 
(7) although approximation 14 in Table 3 gives good results for x > 20, it 

is not recommended due to its rather complicated form. 
For approximations Q(x) with Y # 0, the data given in Tables 5-8 show 

that number 1 for the first degree, number 3 for the second degree and 
number 5 from the irrational approximations give the best results. Although 
approximation 6 gives good results for x > 20, it is difficult to handle. 

The approximations given by eqns. (30) (39) (41) (46) and (50) can be 
applied, in principle, for any value of r. 

Using the procedures presented here, other approximations can be de- 
rived for Q(x). 

CONCLUSIONS 

(1) It has been shown that the approximate evaluation of the temperature 
integral consists of finding a solution for the differential equation (17). For 
such equations, solutions of the form (24) obtained from eqn. (23) are 
proposed. 

(2) A method for the determination of the coefficients c, is given (see 
cases 5 and 6). 

(3) The precision of the approximations decreases with an increase in r. 
(4) The method presented in this work allows us to obtain other ap- 

proximations by a convenient choice of functions of the form (19). 
(5) We recommend the following approximations from this work 

J 
T 
yr e -E/R! dy = 

0 gTriz e-E/RT 
x2+x(4 + r) 

x2+x(6+2r)+(r+3)(r+2) (64) 

J 

T 
y'e -E/hdy z 

0 

3+2e-E/RTX:;:r (65) 
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J 
T 

yr e -E’Rydy= E 
Rv+* 

0 

and for r= 0 

/ 

T 
e -E/R? d v z ; 79 e-E/RT x2+ 5.347x+1.376 

0 x2+ 7.347x+ 10.069 

(66) 

(67) 

In all these approximations x = E/RT. 
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