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ABSTRACT 

The behaviour of the partition function of translation of an ideal gas particle in a cubic 
box of gradually decreasing dimensions has been studied. For the thermodynamic term of 
molar translational heat capacity at constant volume this process leads to distinct deviations 
from the conventional term of :R when considering very small dimensions of the cube. The 
dependence on the cube-edge magnitude exhibits a maximum which exceeds $R by about 
1.56 J K-i mol-‘. These results have been applied to hydrogen isotopes occluded in 
elementary cubic cells of Pd. It has been shown that the effects of translation in small 
volumes can contribute to the observed temperature heat capacity maximum of the Pd-hy- 
drogen system. 

INTRODUCTION 

The first available information [3-131 concerning the presumed low-tem- 
perature nuclear fusion in Pd fed with deuterium has naturally revived 
interest in the various physicochemical characteristics of this system. The 
former quantum chemical studies of energetics [14-201 can now be meaning- 
fully extended to the thermodynamic aspects of the behaviour of this system. 
These also include the heat capacity of hydrogen in Pd which shows a 
remarkable temperature anomaly [21-241. The heat capacity at constant 
pressure exhibits a local maximum at a temperature of about 55 K (the 
position of this maximum is similar for isotopes H and D). This peak can be 
interpreted using arguments similar to those employed to explain the Schott- 
ky anomaly in a system with two energy levels. In the case given, two phases 
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coexist, namely an (Y phase with low hydrogen content and an expanded, 
hydrogen-rich p phase [25]. The presence of these two phases can be treated 
[26-291 within a quasi-chemical model [30,31]. 

Recently, attention has been paid to limiting the behaviour of the parti- 
tion functions of motions whose quantum models show a quadratic depen- 
dence of the energy spectrum on the quantum number(s) [32-421; this is true 
of the partition functions of free internal rotation or translation in a 
rectangular prism. These studies have shown the need for transition from the 
conventional one-term partition functions [43] to multiterm expressions 
[32,37,44,45]. From our viewpoint, the possible dependence of translational 
partition function on vessel shape is of interest [38-421. Such a dependence 
could be important when studying the motions in systems represented by a 
large number of relatively isolated spaces of very small dimensions, e.g. 
cavities of various types [46,47]. Hydrogen isotopes occluded in Pd have 
recently been approximated in this way, and it has been shown that the 
molar internal energy of translation can increase above any limit when 
decreasing the dimensions of the elementary cells to the zero limit [42]. This 
paper is a continuation of this work and develops the model, focusing on the 
aspects related to the heat capacity term. 

RESULTS AND DISCUSSION 

General formulation 

The energy of an ideal gas particle of mass m in a cubic box of edge a is 
given by the well-known relation [43] 

E 
h= 2 

n,n,nl = - n, +n ‘+n,=) 
8ma2 i 2 

where n,, n2 and n3 are the quantum numbers (n, = 1, 2, . . . ) and h 
denotes the Planck constant. The translational partition function for this 
cube is given by the summation 

(2) 

where k is the Boltzmann constant and T is the absolute temperature. 
The partition function of 1 mol of this ideal gas (corrected boltzons) is 

Q=q”l/N!, (3) 

where N is the Avogadro number. In these terms the contribution of 
translation to heat capacity at constant volume is [43] 

sc,,=( i3~/a~), (4) 
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where the molar translational energy E is given by the relation 

E = kT*( 8 In Q/aT) u,N 

After carrying out the respective operations we obtain 

(5) 

(6) 

Clearly, in the conventional limiting case u + 0 (e.g. a + 00) 

lim SC, = $R 
O-+0 

(7) 

Also it is obvious that although eqn. (6) allows for a dependence on edge 
length a (cf. eqn. (2)) the conventional relation (7) does not involve such a 
residual dependence. 

Application to the Pd-hydrogen isotope system 

In order to simulate Pd elementary cells, let us adopt the same approach 
as used in ref. 42. Hence we consider (i) a cell derived directly from the 
face-centred cubic (f.c.c.) lattice of the metal with a lattice constant [48] of 
a = 3.884 x lo-” m and (ii) a lattice constant u = 4.020 x 10-i’ m corre- 
sponding [48] to a sufficient occlusion of hydrogen. (For our purposes it is 
not important that the lattice constants for the coexisting (Y and p phases 
differ: 3.894 x lo-” m and 4.025 X lo-” m respectively [25].) Finally, a 
third value of the edge length a is also considered as recommended in ref. 
42, i.e. a value derived from the term of 4.020 X lo-” m by subtracting the 
reported [49] twofold metallic radius of Pd (a = 1.280 X lo-” m). The 
hydrogen isotopes ‘H, *D and 3T (as well as the most stable helium isotope 
4He) are considered to be present in the elementary cell as free atoms 
(although their real form is still rather an open question [50]). 

The derivation given above presumes the occlusion of 1 mol of ideal gas 
particles in a common cube. However, in the real situation for the Pd-hy- 
drogen system, the bulk of Pd metal is represented by a large number of 
(mutually interacting) elementary cubic cells, which dramatically reduces the 
number of particles in one cube. If we assume that the motion of any 
occluded particle represents translation in a single small cube, the one-par- 
ticle partition function will continue to represent the starting point. Al- 
though the combinatorial reasoning will be different, the resulting formula 
(6) can also be considered to be significant for the particular situation 
treated. 

Figure 1 presents the dependence of the X,/R term on the dimensionless 
parameter u. It can be seen that with increasing value of the u parameter the 
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Fig. 1. Dependence of the reduced molar heat capacity at constant volume for translation in a 
cubic box (SC,/R) on the reduced dimensionless quantity u in the region of moderate values 
(the broken line indicates the result for the limit u + 0, i.e. from the conventional transla- 
tional partition function approach). 

X,/R term increases above the conventional limiting value of :. The 
maximum is attained at about u = 0.349, the height of this maximum being 
equal to about 1.687. A rapid decrease to zero is then observed. 

Table 1 shows the temperatures at which the maximum of Fig. 1 is 
reached for individual choices of the parameters a and m. It can be seen 
that, with regard to the observed maximum in the heat capacity at constant 
pressure in the Pd-hydrogen system at about 55 K [21-251, the phenomenon 
of translation in a small volume cannot be used as an exclusive (alternative 
[25]) explanation of the origin of this maximum. Nevertheless, this phenome- 

TABLE 1 

Temperature position T, of the maximuma of the translational heat capacity at constant 
volume SC, for species accommodated in Pd cells 

a (lO-‘” m) T, (K) 

‘H 2D 3T 4He 

4.020 42.1 21.1 14.1 10.6 
3.884 45.1 22.6 15.1 11.4 
1.280 415.3 207.8 138.8 104.6 

a The maximum height is 14.030 J K-’ mol-‘, i.e. by 1.559 J K-’ mol-’ larger than the 
conventional term $R. 
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non can be taken as a mechanism contributing to this maximum. For a final 
evaluation of the importance of the contribution of this mechanism, it will 
be necessary to elaborate further (cf. refs. 42,51) the model used in this 
work. 
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