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ABSTRACT 

The analysis of equilibria in solution by the partition function method has shown how the 
total chemical amounts [TM], [TA], and [Tu] of the components M. A, and H respectively can 
be expressed and determined as functions of different powers of site affinity constants k, and 
cooperativity functions y( i,, b,), whereas the cumulative formation constants /IppR cannot be 
used as statistically independent parameters to be refined in least-squares processes. The 
same drawback holds for molar enthalpies, AHpQ,. 

A special algorithm has been developed by which the heat evolved can be expressed as a 
function of specific site enthalpies Ah, and specific cooperativity enthalpies Ah,,, for each 
class j of sites. The algorithm represents the mathematical analog of the interconnections 
between components in the types of complex macrospecies M,AQH,, M,AQ, A,H,, 
M,H,, M,(AQH,), etc., of the chemical model assumed and their deconvolution into 
microspecies M,A,H,. Each class j of sites with site constant k, and cooperativity 
coefficient b, is described by a polynomial J, = (1 + k,y,.,[Y,])‘f, where Y, is any ligand M, A, 
or H and i, is the number of sites in the class I. The concentrations of the microspecies are 
calculated as single terms of the polynomials J, or by products of more terms, each of which 
belongs to a different 4. Each term of the polynomial is labeled by its own index ( p,, or q,, 
or 5, or in general i,), which is the exponent of the term and contains the statistical factor 

ml, 
calculated as the coefficient of the term of the polynomial. The product of more terms is 

labeled by the indices of the component terms. The relations are therefore represented by 
combinations of indices [p,, p2, . . , q,, q2, . . , r,, r,, . . .]. 

In order to perform the calculation of concentrations of the microspecies and macro- 
species by a procedure suitable for computer programming, each polynomial J, is associated 
with a vector J, whose elements [i,] are the terms of J,. The cooperativity factors are set in a 
diagonal matrix l?, whose elements are yj;, = ex p[b,(i, -l)i,] and then introduced into the 
non-cooperative polynomials J,* by vector products J,*I’, = J,. The product of terms giving 
for each microspecies the contribution to the total concentrations [T,], [TA], and [Tu] is 
calculated as the element of a matrix L,(,,,,z. ), obtained as tensor product: L,,,,,, = J,Jz or 
L ,(,,2.3j = J,J,J,, etc. Depending on the chemical model, there are additional different 
matrices L,. The combination of indices of each element of L, is { p,, p2. . . . . q,. q2, . . . . 

r,, r2, .}. The indices are said to define an index space {i.s.}, parallel to the affinity 
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cooperativity space. The elements of the matrices L, are also used to set a matrix AC, whose 

elements AC,,, are the changes of concentration of the microspecies during the thermochem- 
ical reaction. The i.s. is parallel to the concentration space also. 

The enthalpy change at the nth experimental point for each microspecies M,A,H, is 

calculated from the quantities SH,,,,, = Acpqr { P[A~,.~ + (p - 1) Ah.,,,,] + q[Ah,., +( q - 

1) Ah,,,]+ r[Ah,., +(r -1) Ah.,,,,]} which are then summed for all the indices p,q,r. This 
relation can also be put in a matrix form: SH, = ACT{H+H,}. All these matrices define 
spaces which are parallel to {i.s.}. The observed heat at the n th experimental point is the 

scalar product 8Qn,obs = {a,, }T~,,, where the elements of the vector x,,, with 1 I j’ I 2j,,,,,, 
are the whole set of J couples of variables Ah,, Ah,, and the elements of the vector a,’ are 
weighted experimental thermochemical values. 

By repeating the calculations and summing successively the values for all the n experimen- 
tal points, the system of normal equations Ax,, = AQ is set up, where the elements of AQ are 
sums of n weighted experimental heats. By solution of the system, the values of Ah, and 

Ah, for all the j classes are obtained. 

INTRODUCTION 

In preceding papers, we have developed a partition function algorithm 
[l-7] to calculate the binding of ligands and/or protons to macromolecules 
as a function of site affinity constants k, and class cooperativity functions 
q(i), b,) where b, is the class cooperativity coefficient. This procedure 
overcomes the difficulties arising from the use of the cumulative or Adair 
constants PPpR = [M,AQH,][M]-’ [A]-Q[H]-R for each complex M,A,H,. 

The partition functions in terms of cumulative formation constants are 
written as 

P Q R 

Z, = C C CP~QR[MI P-'[~l ‘[HI R 
1 0 0 

P Q R 

G = C C C&p [MI ’ [AI’~-“[H 
0 1 0 

I” (2) 

(1) 

P Q R 

~~~~~~Ppg~~~l~~~l~~~l~~ 
0 0 1 

-1) 

and the mass balance equations giving the total analytical concentrations of 
each component are 

PQR 

[TM] = C C C%pR [MI ‘[AI ‘[HI R (4) 
1 0 0 

P Q R 

[L] =CCCP~~~~~~lP~~lQ~~lR 
0 1 0 

PQR 

[TH] =CCCRP~QR[MI~[AI~[HI~ 
0 0 1 

(5) 

(6) 
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The constants PPpR are in general calculated by optimizing the values of 
the constants themselves which fit the experimental data, e.g. a potentio- 
metric curve fit by means of a least-squares process [8,9]. If, however, the 
constants within one class j are correlated with one another by the same site 
affinity constants k, and by the same cooperativity functions I’,(i,, b,), the 
constants PPQR cannot be considered as independent variables in a least- 
squares process. These difficulties have sometimes been overcome by intro- 
ducing imaginary roots [lO,ll]. 

We have proposed [6,7] instead to write the partition functions as func- 
tions of site affinity constants k, and cooperativity factors y,,‘] which are 
the values of the cooperativity function I’,(i,, b,) at the step i,. The explicit 
form of the function r,(i,, b,) will be given below. For example, in a system 
with complexes MA,, having several classes j of sites 

Z, = 1+ ; ;ii m,,(y,,,k,bl)9’ 
Q=l 9,=1 

(7) 

t 

‘.4=l+ Q~~~~,~~,(,,~kj~al)9’[~lIal-’ (8) 
I 

for binding between M and A, where the symbols q, refer to indices of 
single sites for each class j, Q = C qj is the index of macrospecies, and Q, is 
the index of the saturated complex. The mass balance equations are calcu- 
lated as sums of single terms; for the above-mentioned example, 

- [Ml QL?, 9?i~~9,(v,,k,L41)‘; (9) 
/ 

PM1 = [Ml ’ 

PAI = [Al + EM1 2 i?i ( C4,)~,,(Y,.,k,[Al)9' 
Q=O 9,=1 

(10) 

By this method, values of site affinity constants k, and coefficients b, of 
class cooperativity functions are used as the variables and refined by 
least-squares methods. Reasonable physicochemical interpretations of the 
site constants and the cooperativity coefficients can be given [4]. 

The adoption of site affinity constants and cooperativity functions to 
describe the binding of ligands and protons to macromolecules, and of 
self-association of macromolecules as well, requires that an analogous method 
be adopted in the calculation of binding enthalpies when obtained by 
calorimetric methods. 

MICRO- AND MACROSPECIES 

The introduction of the subdivision of the cumulative constants into 
contributions due to different powers of single site affinity constants implies 
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that each species of stoichiometry M,A,H, is the sum of several micro- 
species corresponding to different combinations of indices p,, q], YJ: 

p=cp, Q=&, R=p) 

The relationship between the indices pJ, q,, and r~ of terms and indices P, 
Q, and R can be conveniently represented by using so-called affinity-coop- 
erativity space. This space is a formal mathematical representation which 
facilitates the calculation and manipulation of the factors composing the 
products of eqn. (7) and represents the mathematical analog of the intercon- 
nections between components in the types of complexes M,A,H,, M,A,, 

A,H,, MPH,, M+AH,),, etc. of the chemical model. The distinction 
between macrospecies M,A,H, and microspecies M,A,H, can also be 

made on this basis. 
Each class j of sites with site constant k, and cooperativity coefficient b, 

is described by a polynomial, called the binary generating function: 

where Y, is any ligand M, A or H, y,,, is the cooperativity factor given by 
the value of the function I,Ci,, b,) at point i,, and i, is the total number of 
sites in the class j. In eqn. (12) it is not specifically indicated which 
component is the receptor X, = M, A, or H, although this information must 
be specified and used for the chemical model. The concentrations of the 
individual microspecies which contain only one class of sites are calculated 
as single terms of the polynomials Jl. When more than one class of sites is 
present in a microspecies, the concentration is the product of appropriate 
terms from different J, polynomials. Each term of the polynomial contains a 
statistical factor from Fermi-Dirac statistics, calculated thus: 

m,, = i,,!/i,!( i,, - i,)! (13) 

Each term is labeled by its own index (p,, q,, r,, or in general i,), which is 
also the exponent of the term. The products of terms are labeled by the 
indices of the component terms from which they are constituted. These 
products can therefore be represented by combinations of indices { p,, pz, 

. . ., ql, q2, . . ., rl, r2, . . . } and the summations in eqns. (7)-(10) are limited 
by the combinations of lower-case indices compatible with the chemical 
model adopted. 

VECTORS AND TENSORS 

In order to set up the calculation of the concentrations of both micro- and 
macrospecies in a procedure suitable for computer programming, each 
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polynomial J, is represented by a column vector {J, } whose elements are the 
terms of J,, i.e. 

{iJ} =m,,(y,,,k,[Y,])“=i,,!/i,!(i,,-i,)!(exp[b,(i,-l)]k,[Y,])I’ (14) 

or by row vectors [J,]., with the same elements. The number of elements of 
each J, is i,‘+ 1, with 0 <i, I it’. For the sake of simplicity, we may 

separate, whenever necessary, the binding factors, k,[Y,], from the cooper- 
ativity factors, y,,,, by representing the latter in a separate diagonal matrix 
F,, whose elements are 

Y,‘il = exp[ h,tiJ - ‘)‘J] (15) 

These can be introduced into the polynomials by performing the vector 
multiplication 

J, = JJ*I-, (16) 

where the vector JJ* represents the polynomial without the cooperativity 
component (i.e. y,., = 1). Products of terms belonging to different polynomi- 
als are calculated to obtain the contribution to the total amounts [T,], [TA] 
and [Tu]. These products constitute the elements of a matrix L,(‘,,‘:.. .), 
where I is an index number which identifies a reaction consistent with the 
chemical model and j,, j,, . . . are the indices of the component vectors. 
This matrix is obtained from tensor products 

L 41.2) = {JI > 1521 (17) 

or 

L 1C1.2.3) = {{JIHJ2lHJ31 08) 

etc. There will be additional different matrices L, depending on the chem- 
ical model chosen. 

INDEX SPACE 

The elements of the matrix (tensor) L, can be considered as points of a 
space (affinity and cooperativity space) (Fig. l), where the coordinates along 
the axes are the elements of the vectors J, used to calculate the tensor 
product. The combination of indices of each element of L, is { p,, p2, . . . , 

P J’ 
. . . , q,, q2, . . . , q,, . . . , r,, r2, . . . , rJ, . . . }. The indices define an index 

space { i.s.}, parallel to the affinity-cooperativity space. Every operation 
with the elements of L, can be most simply represented by a combination of 
indices. 

The affinity space is useful to show how the cumulative constants PppR 
are biased when used as variables in a least-squares procedure [6]. The 
cumulative constants, taking for simplicity plpO = &, are obtained by sum- 
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Aflmty and Cooperat~nty Space and Index Space 

1 ~Wl.l[k!l 0 (1 i t 

2 ~1*Yl~~w I j ( t f 1 

4 J, 
Fig. 1. Affinity/cooperativity space (a.c.s.) and index space (i.s.). Each element of the matrix 
is {i,, 12} = m,l(y,.,kl[Y,])“m,2(y*.,k2[Y21)‘~. For the sake of simplicity, two-index elements 
are indicated by ( }. They are calculated as the product of the first element of the row 
multiplied by the first element of the column. 

ming the terms along the diagonal lines in the matrix L /. This transforma- 
tion (cf. Fig. 2 of ref. 6) is equivalent to a rotation of the axes J, and J, onto 
the bisector fip which is the new reference axis. The coordinates along the 
axis & are biased because they are a mixture of different powers of 
different k, and y, values, whereas the coordinates along the axes J, and J2 
separate the effects because they are uncorrelated (orthogonal). 

POWER OPERATORS 

In order to take into account some features of the chemical model, special 
operators 0, with unprimed index or O,, with primed index are introduced. 
These operators are particularly important when competitive binding for the 
same sites occurs, when self-association of the receptor takes place, or when 
a ligand binds to a receptor which is in turn the ligand for another receptor. 
They define which ligands or groups of ligands are involved in the cooper- 
ativity effects [6,7]. 

One example which shows the difference between primed O,/ and un- 
primed 0, operators is a system with two components, M and H, with 
self-association of M. For the sake of simplicity, we assume that there is 
only one class j = 3 of rt = 3 sites on M for H. The self-association 
polynomial is 

Jl = (1 + h,,M)p’-’ (19) 

It is assumed that there is no self-association of H and that J2 reduces to 1 
since k, = 0. For the binding of H to M, the polynomial is 

4 = (1 + &YS,~ [HI 1” (20) 

If we assume that pt = 2 and r, = 3, the saturated complex is M,H,. We can 
choose a model where both statistics and cooperativity among H are 
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extended up to a maximum of six sites (r,’ = 6) with polynomials 

J3t = (1 + /Q~~,/[H])~” (21) 

of variable degree r,’ = p X r,, changing with the index p controlling the 
self-association. The corresponding new vectors J3, are obtained by the 
operator Opt, which modifies J3. In tensor notation, we can write 

L /(I .3) = {J,>[JY] = {Jd[O,~Jx] = { Jd[(Op,J:)(Op,r3)] (22) 

Note that OP, modifies both 5: and I?,, prior to tensor multiplication, giving 
rise to a triangular matrix L,(,,,,. 

In contrast to the above chemical model, we could choose a model where 
both statistics and cooperativity are restricted within the set of protons 
bound to the same M. In this case we have a product of p polynomials J3 
which is different from the pth power of J3 in the y3,r term. Thus 

(23) 
P 

because in the operation on the left-hand side y is a function of p as well as 
Y, whereas on the right-hand side y is a function of Y only: 

Y35 f Y3.1Y3.1 (24) 

In tensor notation, we can write 

L /cl .3) = iJd[O,J3] = {Jd[Op(J,*r,)] (25) 

where the operator OP indicates that we have to calculate the pth tensor 
power of J3, without modifying I’,. This keeps the cooperativity effect 
restricted to those protons which are bound to the same M. The resulting 
matrix L,(, 3j is a matrix of matrices. In this example, by increasing the 
number of’ H beyond r, = 3 for p > 1, the cooperativity effect, and the 
statistics as well, start to be counted again from Y = 1 on addition of the 
fourth proton up to the sixth. 

COMPUTER INPUT INFORMATION 

The following information is needed for input into a computer program 
based on the above concepts. 

(1) The chemical model (Table l), with complex macrospecies M,A,H,, 
M,HR, M,A,, M,(AH,),, etc. and classes j with number of sites. An 
example is given in Table 1 for a macromolecule M which may bind a total 
of three ligands A or H. 

(2) The list of binary generating functions J, corresponding to vectors J, 
necessary to construct the chemical model, with initial estimates of k, and b, 
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TABLE 1 

Macromolecule M, ligand A, proton H. Competitive binding for the same sites. Complexes: 
MA,. MH,. MAOH, with Q + R Q Q, = R, = 3 

P=l 

OaQ<3 MAQ Class 4 3 sites 
l<R<3 MH, Class 5 3 sites 

l<Q+Rg3 

Saturated Complexes 

MA,H, 
Class 4 
Class 5 

MA, 
MA,H 
MAH, 

MH, 

3 sites 
3 sites 

TABLE 2 

Generating functions (vectors J,) 

J Receptor Ligand k, b, it r, 
[X,1 IY,l P 4 r 

1 [Ml WI 0 0 1 (q-L)(q-2) 
2 [Al WI 0 0 1 (q-l)(q-2) 
3 WI WI 0 0 1 (r-l)(r-2) 

4 WI [Al 10’ -0.2 3 4(4-L) 
5 WI WI lo6 -0.2 3 r(r - 1) 

Numerical values of k, and b, are hypothetical. 

TABLE 3 

Tensor matrices L, 

Products 
I 

1 
2 
3 

4 

J, 
J2 
J3 
{JI 1 {JdOr,-,J,)l 
Each J, is intended as multiplied by its appropriate P, 

Elements 
I 
1 
2 
3 

4 

p-1=0 
q-1=0 
r-1=0 

{(p-l)aI, {q4(C&r6)I 
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TABLE 4 

Tensor matrix L,: expanded elements 

Minimum 

P--l 0, 

Intermediate (examples) 

P-l 

4 
r 

P-l 

4 
r 

0, 

P-l 

4 
r 

0, 

3, 

24 
15 

14 
25 

P 
1 

P 
1 

P 
1 

P 
1 

Q R 

Q R 

3 
0 

Q R 

2 
1 

Q R 

1 

2 

Affinity-cooperativity space 
Compact 
indices 

0,3‘!05 
01,2,1, 
0,142, 

For a complete matrix L, see appendix A. 

and maximum numbers of sites pt, q,, and r,. The example is carried 
forward in Table 2. 

(3) The possible multiplication rules (Table 3), obtained by inspection of 
the chemical model, of vectors J, and power operators, 0, or O,,, giving rise 
to the matrices L,, from which microspecies M,A,H, are derived. 

Some examples of elements of L, both for index and for affinity-cooper- 
ativity space are given in Table 4. 

ENTHALPY SPACE 

By taking the logarithm of each element of L,, we pass from affinity space 
to free energy space. This principle holds for all the factors which make up 
each element, as obtained from eqn. (14), [L,,.,,] of L,: 

AGT/RT=ln[m,,(y,,,k,)“] =ln m,,+i, lny,,,+i, In k, (26) 

In this equation, the statistical contribution In m,, = AS,,,,,,/R is purely 
entropic. Each term of eqn. (26) can be factored into enthalpic and entropic 
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components expressed for a class j of sites in terms of specific site enthalpy, 
Ah,, specific cooperativity enthalpy, Ah,, specific site entropy, As,, and 
specific cooperativity entropy, As,. Thus we obtain 

AG,y=i, Ah,++,-1) Ah,+T[i, Asj+‘,(i,-1) Asu/] +TAS,,,,,, 

(27) 

from which we can derive the partial contribution to enthalpy AH,: due to 
the formation of one of the microspecies: 

AH,? = iJ Ah, + i, ( iJ - 1) Ah, (28) 

By summing the enthalpy changes for a whole class j, one obtains the class 
enthalpy, AH,: 

‘I I 

AH,= C [i, Ah,+i,(i,-1) Ah,] 
r,=O 

(29) 

The class enthalpy can be associated with row vectors [h,] and [hY,] and 
with column vectors {h, } and {h,, } : 

[h,] = [0 lAh, 2Ah, . . . i,] Ah,] (30) 

[hYI] = [0 l(1 - l)Ah,, 2(2 - l)Ah, . . . i,,( i,, - l)Ah,] (31) 

which can be identified with parallel index vectors i, and i, respectively: 

[%I = [ill Ah, (32) 
[hwl = PYII A%, (33) 

Note that every column vector is the transpose of a corresponding row 
vector: {h, } = [h,lT. 

Equations (32) and (33) show that vectors h, and i, define spaces parallel 
to one another as do h, and i,. The indices can be used to define both the 
affinity space and the enthalpy space. The vectors i, are likewise parallel to 
the i.s. because its elements can be derived easily from those of i,. The index 
set is a very potent tool to handle problems of affinity, enthalpy, and 
cooperativity. 

From the term enthalpy of eqn. (27) we can express the enthalpy AH,,, 
of each microspecies: 

AHprr=qj[Ah,+(q,-l) Ah,] +‘r[Ah,+(r,-1) Ah,] (34) 

The above equation applies to a reaction scheme where there is one class of 
binding A to M and one class of binding H to M. The summation can be 
accomplished in a more general way by referring to vectors h, and h,. 
These vectors can be combined following the identical combination rules 
used to generate the elements of the matrices L, of the affinity space. For 
enthalpy, however, tensor sums are substituted for tensor products. Both 
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affinity and enthalpy spaces are ruled by the same combination of indices 
{i.s.} which is parallel to both. 

From the vectors h,=, and h, =*, we can obtain by tensor sum, indicated 
by the symbol @, the enthalpy space represented by a matrix 

H /(1.2) = @I > @ b21 (35) 

whose elements are labeled by indices {i,, i2} as the elements of a matrix 
L 1c,,2j, and from vectors h,=, and h,=2. By tensor sum we obtain the 
elements of the y-enthalpy space, represented by a matrix 

H VW .a = {h,l > @ hl (36) 

whose elements have the same indices as H,(,,,,. Both are parallel to {i.s.}. 
By summing term by term two matrices H, and H,,, we obtain the total 
enthalpy matrix HT.,, i.e. 

Hr, = W + H,, (371 

representing the enthalpy + cooperativity space. 

CONCENTRATIONS 

In calorimetric experiments, the heat evolved is produced by those reac- 
tions that take place within the time interval of measurements. Therefore the 
changes in concentration of microspecies that participate in the reaction 
need to be identified. This can be done by calculating the equilibrium 
concentrations of each microspecies [M,A,H,], [Ml, [A], [HI, etc., before 
and after each addition, using the elements of matrices L, of the affinity 
space. The calculation of concentrations can be performed using site con- 
stants k, and cooperativity coefficients b, obtained, by successive approxi- 
mations, from the mass balance equations which give the total amounts 
[T,], [TA], and [Tn] expressed as sums of the appropriate elements of 
matrices L,. 

The concentrations of microspecies correspond to the terms of the parti- 
tion functions Z,, Z,, and Z,. Each partition function is the sum of all the 
microspecies containing M, or A, or H respectively contributing to the 
osmotic pressure. 

If [c,], [cA], and [cu] are defined as thermodynamic concentrations of 
species containing M, A, and H respectively, we have 

[%I = M-%4 (38) 

[c/J = L-4 z* (39) 

[%I = [HI Z” (40) 



172 

Note that [c,], [cA], and [cn] can be different from [T,], [TA], and [Tn]. In 
fact, only those concentrations must be calculated that contribute to the 
osmotic pressure and to other thermodynamic properties as enthalpy. There- 
fore the terms shared by eqns. (38)-(40) have to be taken only once, and 
hence 

[Cpyr] = [cMwl’ [C”,J = [%Oqr] (41) 

The triple indices p, q, r are used for simplicity. Actually the indexing of 
the concentrations is the same as for the elements of L,. The concentrations 
can also be organized in a matrix C. The data necessary are the concentra- 
tion values before and after each addition. Therefore a matrix AC can be 

formed. 

HEATS 

At the n th experimental point in a calorimetric titration, the enthalpy 
change due to formation of each microspecies is calculated by multiplying 
eqn. (34) by the corresponding concentration change: 

SH,,.pyr = Ac,L,,, (P,[q+(P,-1) Ah,] +4,[Ah,+(q,-1) Ah,] 

+5[Ah,+(r,-1) A&]> (42) 

These terms are summed to give the total calculated enthalpy change at the 
n th point: 

’ l,l.i\ PI, 41 I 6 / 

~4l= c c c c mL,,r (43) 
/=I p,=l y/=1 ,;=I 

Equation (43) can be calculated also as the sum of the elements of a matrix 

SH,, = AcT(i Ah, + i, Ah,,,) (44) 

In the concentration-cooperativity-enthalpy space of eqn. (44) (Fig. 2) 
the relationship between the axes Ah,, Ah, and the axis H, of the 
cumulative enthalpy for macrospecies MA, shows again how the cumulative 
values are biased, whereas the axes based on site-specific thermodynamic 
parameters are orthogonal to each other (compare Fig. 2 in ref. 6). 

We may group together the contributions to i3H, from the same class j of 
sites (eqns. (43) and (44)) and set this equal to the negative value of the 
experimental heat - SQn.ohs: 

(45) 
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Concentration- cooperativity -enthalpy Space. 

Ml , AH2 

Q 1 H 2 / 
. 

. . 
12(172) 

h,(h,) 

Fig. 2. Transformation from site enthalpy Ah,, Ah7 to cumulative enthalpy AHp. h,(h,, ) and 
h,(h,,) are the original axes, AH, the transformed axis. The heat evolved at each experimen- 
tal point, SQ, is calculated by summing the values of all the elements of the matrix. 

where i, =p, or q, or r, and the coefficients u: J and b,' , are calculated 
from the matrix (44). The summation C,, is extended to all ‘the microspecies 
in the matrix AC. 

LEAST SQUARES 

We can represent the equation (45) in matrix notation if we set up Ah,, 

Ah, . . . . Ah,, . . . . Ah,_, Ah,,, Ah,,, . . . . Ah,, . . . . Ahy,n,a, in an array 
with j’ = 2 j,,, elements, represented by a vector 

x,, = [Ah, Ah, . . . Ah, . . . Ah,m,,a, Ah,, Ah,, . . . Ah, . . . Ah, ,,,, &,] (46) 

with index j’ = 1, 2, . . . , j,,,,,, j,,,,, + 1, j,,,,, + 2, . . . , 2 j,,,. On the other 
hand, the coefficients a’ and b’ of eqn. (45) can be represented in a unique 
array forming a vector a,,,, with the same indices and number of elements 

as x,,: 

a 
“.J’ - . . - an l an2 ..’ an,J an.J ,,,.,, bn 1 bn 2 

[ 
. , .” bn.J ..’ brl ,,,.,, . I I 

(47) 

The observed heat -cYQ,,,~~~ can be considered equal to the scalar product 

a 
“.I ‘xJr = - aQ,,,,s (48) 

This equation is the basis for the least-squares calculations of the vari- 
ables of the system, represented by the elements of xJ,. To this end, we 
premultiply (tensor multiplication) both members of eqn. (48) a:.,, = {a,, Jr> : 

tan,,’ 1 [an,J’] txJ’ > = tan,,’ >( -aQn.d (49) 



174 

By defining A,, = {a,,,j}[a,,,t] and SQ,,,,, equal to the right-hand side of 

eqn. (49), 

A,F,~ = SQ,.,,, (50) 

The elements of SQ,.,,, can be considered as weighted experimental 
values. The elements of A,, are [A,(j,‘, j;)] and the elements of xJ, are 

given by eqn. (46). 
By repeating these calculations for n experimental points and summing 

the n equations (50), one obtains 

Ax/= AQot,s,a,, (51) 

The elements j’ of AQobs,u,, are the result of the sum of corresponding j’ 
elements of SQ,,,,,. The elements [A( j,‘, j,‘)] of A are obtained by summing 
elements with equal indices of the n matrices A,. 

By solving the equation system (51), which is the set of normal equations 
for the linear least-squares method, the values of the unknown Ah, and 
Ah y, are calculated. 

CONCLUSIONS 

In the development of a computer program suitable for the calculation of 
site enthalpies, the following points have been considered. 

(1) The cumulative constants PPQR and the cumulative molar enthalpies 

AH,@z of macrospecies M,A,H, cannot be calculated as independent 
variables in least-squares procedures, because they are interrelated. The real 
independent variables, orthogonal to one another, are the thermodynamic 
functions corresponding to microspecies M,A,H,, with lower-case indices. 

(2) Affinity space and parallel index space are calculated from matrices 
L,, obtained by tensor products of generating function vectors JJ. The 
elements of L, are determined by multiplication tables derived from the 
chemical model. Partition functions Z,, Z,, and Z,, and total amounts 
(T,], [TA], and (Tn] can be calculated by the same combination of indices of 
the elements of L,. 

(3) The concentrations of microspecies M,A,H, are identified by parallel 
index sets and calculated by elements of L,, provided that repetitions are 
avoided. 

(4) The enthalpy change 6H,, at the n th experimental point can be 
expressed as a function of concentration changes, AC&, of specific class 
enthalpy, Ah,, and specific class cooperativity enthalpy, Ah,. The enthalpy 
and concentration of microspecies are controlled by the same index space as 
the affinity space. So is the product AcT(i Ah, + i, Ah,), giving the en- 
thalpy-concentration space. 



175 

(5) The values of couples of variables Ah,, Ah,, can be found by linear 
least-squares calculations from the experimental heats, SQn,obs. 
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APPENDIX A 

The application of the method presented here is illustrated in the follow- 
ing by a worked example. 

The model is the same as found in Table 1, with A and H competing for 
the same sites on the receptor M. The number of sites is Q, = R, = 3. 

It is worth noting in advance that the same indices hold for every matrix 
from (A.3) to (A.6). Matrices (AS) and (A-6) and eqns. (A.7) and (A.8) are 
reported only for the purpose of demonstration. As a matter of fact the 
elements of the vector (A.9) can be obtained directly from the matrix (A.4) 
by multiplying each value Acpqr by q or r (or by q(q - 1) or r( Y - I)), 
depending on which coefficient a,? is being calculated. This is a conse- 
quence of the application of eqn. (45): 

a@Q,>/‘a(Ah,) = - xi, &r (A.1) 

and 

a@Q,)/+h,) = - ci,(i, - 1) ‘%qr (‘0 

In fact eqns. (A.l) and (A.2) give the coefficients of eqn. (A-8) and hence the 
elements of a,,,, in eqns. (A.9) and (A.ll). 

It should be mentioned that eqn. (A-13) and its compact form (A.14) 
represent the set of normal equations for the determination of the parame- 
ters by a linear least-squares method. 

Worked example 

From the binary generating functions of Table 1 and from the multiplica- 
tion rules of Table 3 the following matrix is obtained: 
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At the n th experimental point, the following concentration changes can 
be calculated from the mass balance equations: 

ACyr 

F-5 

From vectors h, and h,, the total heat matrix can be obtained: 

(4.4) 

HT 

0 

0 

0 

1 

Ah, 

q4 1 Ah, Ah, Ah, 
2 2 Ah, + 2 Ahyd 2 Ah, Ah, + 2 Ahy4 

3 3Ah,+6Ahy4 

Then by matrix multiplication the 

6H,, = AcTH, 

I 0 1 

2 3 

2 Ah, + 2 AhyS 3 Ah, + 6 Ahy5 

Ah, 2 Ah, + 2 Ah,, (A-5) 

enthalpy matrix SH, can be obtained: 

r5 
2 3 

0 0 Ah, Ar,,, (2 Ah5 + 1 AhT5) AC,,> (3 Ah< + 6 Ah,i) A<,>, 

4, 1 Ah, A< I,, (Ahd+AhT) AC,, (Ah, 2 Ah, + 2 Ah,,) A<,? 

2 (2Ah,+2Ah,,) AC>,> (2 Ahq+AhS+2Ah1a,) A<?, 

3 (3Ah,+6Ah,,) AC,,, 

(A.6) 

From the matrix (A.6), the heat evolved at the n th experimental point is 
calculated as 

- SQn,oix = Ah,(l A+, + 2 AC*,, + 3 AcjO + 1 AC, 1 + 2 Aclz) 

+ Ah,4(2 AC20 + 6 AcJO + 2 AC?, ) 

+ Ah,(l Ace, + 2 Ac02 + 3 Aco3 + 1 Ac,r + 1 Ac2, + 2 Ac,J 

+ Ah,,(2 Acoz + 6 Aco3 + 2 AC,*) (4.7) 
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and in more general form as 

+ A$,[ Cd4 - 1) AC,,] + A&-,[ z+ - 1) AC,,] 
= Ah,aA + Ah,a; + Ahy4bi + Ah,5b; 64.8) 

where the summations are extended to all the elements of the matrix (A.6). 
The coefficients of eqn. (A.8) can be represented in an array of index j’ 

forming a row vector 

[a,,] n = [ai a; b: Gl n = [a,,] n (A-9) 

whereas the specific heats of eqn. (A.8) are arranged in a column vector of 
index j’ 

Ix,, > = [Ah, Ah, Ah,, Ah,,] (A.lO) 

so that 

[a,,] ,, {x/ > = SQn (AM) 

which is the generalized form of eqn. (A.8). 
By pre-tensor multiplication of both members of eqn. (A.1 1) by {a,, },l = 

[a,X, and by defining 

AtI= ra,,,,,[a,f],, (A.12) 

the following equation is obtained: 

*>j = a,,, aQn.obs = SQn.,,, (A.13) 

For n experimental points, n matrices A, and 
element by element, thus obtaining 

n vector a,,, can be added 

where the elements of AQobs,o,, are obtained from 

Ca,,, SQn.obs = [ AQobs,rr,t] 
II 

(~.i6) 

at constant j’. 
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