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ABSTRACT 

The kinetic parameters E and 2 (apparent activation energy and global frequency factor) 
and the model function g(o) that best fits simulated experiments in non-isothermal analysis 
are determined by three integral simple methods. It is proved that one of these methods 
(method B) has the greatest potential to choose the model function g(a) that best fits the 
non-isothermal experiments. A statistic comparison is made among these methods in the 
calculation of E and log 2. 

INTRODUCTION 

Quantitative mathematical description in thermal analysis is directed to 
the determination of kinetics because in that way the reactions and processes 
involved can be better understood [l]. 

Sestklc [2] and Krlz and Sestalc [3] highlighted methodological problems in 
the study of kinetic reactions by thermal analysis and warned about the 
manipulation of data, and inappropriate mathematical procedures, thus 
assuming that greater efforts to improve them were not essential. Although 
those recommendations are justified, we believe there are several reasons not 
to end discussion on the method of analysis of experimental data in thermal 
analysis. Maciejewski [4] put forward some interesting comments, and we 
think it necessary to add some others. 

To begin with, studies on heterogeneous non-isothermal kinetics (e.g. refs. 
5-21) have stressed: (a) the determination of model function, f(a) or g(a), 
that best describes the reaction mechanism, or (b) the evaluation of kinetic 
parameters E and 2 (apparent activation energy and global frequency 
factor), either assuming previous knowledge of the reaction mechanism or 
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independently of it. Nevertheless, there are few works which stress the joint 
importance of g(a) (or f( at)), E and 2, which would allow reasonable 
conclusions to be reached on thermal d~omposition kinetics [22-253. 

On the other hand, in most cases, the scope or potential value of the 
methods for discrimination of probable and/or not probable g(a) has not 
been clarified; this has also been the case for the accuracy and precision 
with which E and 2 have been determined. 

Therefore the aim of this work is to determine the E and 2 parameters 
and the integral model function g( cz) that best fit simulated data from 
thermoanalytical techniques (e.g. differential scanning calorimetry (DSC), 
thermogravimetry (TG)) by three methods based on different approxima- 
tions of the Arrhenius integral. These methods are compared by analysing 
their potential to differentiate mechanisms, their sensitivity to variation of 
the parameters involved in the suggested expressions, and the accuracy and 
precision with which kinetic parameters E and Z are obtained. 

THEORY 

Integration of 
solids, assuming 
results in 

the expression of rate of irreversible decomposition of 
that the pressure of gaseous products remains constant, 

The problem in eqn. (1) lies in the resolution of the integral of the last term 
(the Arrhenius integral). The first approximation generally accepted is to 
assume 

From eqn. (2) we work with three different approximations of this integral, 
which give the following suggested methods. 

Method A 

This is based on the Doyle approximation [26]. Thus eqn. (1) is expressed 
as follows: 

where x = E/RT, and In p(x) = -5.3305 - 1.0527~ (20 < x < 60). Then, 
considering eqns. (1) and (3), for two experiments carried out at two 
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different heating rates j3, and q,i being the temperature for conversion aj,i 
at a heating rate pj, we obtain 

In 
gCaj,i>Pj 

g(aj+n,i+m)Pj+n 1 (4) 

Method B 

Approximation of integral I (eqn. (2)), has been expressed by Gorbachev 
[27] as follows: 

I= $ expb) P&) (5) 

where different expressions for pk( x) have been used by various authors: 
(1) Coats-Redfern 

p,(x) = 1 - 2 x +A+... 
X2 

(2) Gorbachev-Schiimilch 

-1 

(3) Balarin 

(4) zsako 

p4(x)= (x_d;;x+2)’ 
d= l6 

x2-4x+8 

For x > 10 different approximations pk(x) give similar values. Besides, in 
this case, it is true that 

Pk( E/R7;,i) 

~&W~+n,i+,) = ’ 

if xj,iT xj+n i+m values are close. 
Considerkrg eqns. (1) and (5) and applying eqn. (6) we obtain 

gCaj,i>Pjqtn,i+m E 1 1 ( 1 -- 
gCaj+,,i+,)Pj+,qTi = - iT 7;,i I;+n,i+m 

(6) 

(7) 

This is a generalized expression of that used by Reich and Stivala [21] in 
their iterative method for the particular case in which g(a) = 1 - (1 - a)“. 
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Method C 

The approximation of integral I according to Senum and Yang [28] is 

I= Texp(-x) 
x2 + 10x + 18 

x3 + 12x2 + 36x + 24 (8) 

For very close temperature values ( I;,i, I;.+n,i+m), with a relative difference 
below or equal to 5%, the expression between brackets in eqn. (8) does not 
differ greatly. 

From that stated above and eqn. (8), for two experiments carried out at 
different heating rates, the following expression is obtained: 

doci,i)PjTj+n,i+m E 1 

1 ( 1 -- -- 
g(aj+n,i+m)Pj+n7;,i = R q,i I;.+n,i+m 

(9) 

Now, from eqns. (4), (7) and (9), we see that the graph for the first term vs. 
the expression between brackets in the last term is a straight line, the 
intercept of which on the ordinate has to be equal to zero. E is obtained 
from the slope value. On the other hand, from the approximations of 
integral I (eqns. (3), (5) and (8)), and from eqn. (l), 2 is obtained. 

In method A, and because of the error in the Doyle approximation, the E 
values obtained from eqn. (4) are improved by applying the correction 
suggested by Flynn [29]. 

EVALUATION PROCEDURE 

To test the suggestion above and verify considerations stated earlier, 26 
different model functions g(a) were used (as listed in Table 1) to simulate 
experimental a-T curves with the test values shown in Table 2 for (Y 

TABLE 1 

Integral model functions g(a) corresponding to solid decomposition reactions chosen from 
the literature 

Code number 

1, 2 
3 
4 
5 

6-12 
13-18 
19-24 

25-26 

g(a) 

[l -(l - #3]n n=2,+ 
[l -(l - (Y)l’*]l’* 
[(l+ a(y -l]* 
[(l- (Y)_1’3 -112 

[-hl(l-a)]” n =l, f, +, f, 4, 2, 3 
1-(1-a)” n = +, 3,2,4, f, a 
1Y* n=l,2 9 3 ’ ’ T, 7, 3, a ’ 

+x-“-l] n=l,2 
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TABLE 2 

Model function g(a) and values of parameters E, log Z and p used to simulate experimental 
IX-T curves 

g(a) Parameter values 

E log z 
(kJ mol-‘) (Z in s-l) 

fij 
(K mir-‘) 

l-26 120 13.0 2 4 
120 13.0 8 16 

80 13.0 2 4 
1, 6, 9, 18, 23 i 270 13.0 2 4 

120 8.0 2 4 
120 18.0 2 4 

between 0.01 and 0.99. The Arrhenius integral values were obtained from 
the Senum and Yang expression [28], as this provides values with error 
below 10P2%. The E, 2 and /3 values shown in Table 2 were selected taking 
into account the range of experimental values of solid decomposition reac- 
tions most commonly found in the literature. Model functions g(a) 1, 6, 9, 
18 and 23 we!e chosen, taking into account the five types of mechanisms 
suggested by Sestak and Berggren [30]. 

The values for the intercept on the ordinate, E and the correlation 
coefficient for the 26 model functions were calculated using eqns. (4), (7) 
and (9) for each method. Log Z was then calculated from eqn. (1) by 
applying the approximation of integral I used in each method. To calculate 
log Z for method B the Coats-Redfem three-term expression was selected. 

RESULTS 

Here follow the results of the calculations performed on the basis of the 
potential of the methods to differentiate mechanisms, their sensitivity to 
variation of the parameters involved (E, Z, g(a) and /3), and their accuracy 
and precision in calculating E and Z. 

Potential of the methods to differentiate model function g(a) 

From theory, on applying eqns. (4), (7) and (9) to (simulated) experimen- 
tal data, the g( (Y) that best represents the decomposition mechanism will 
result in a straight line with intercept value closest to zero. The results of our 
calculations show that although many model functions g( cu) give highly 
significant correlation coefficients, only one of them (that of the simulation 
of the experimental curve) yields an intercept value remarkably closer to 
zero than the rest. As they are simulated curves without experimental error 
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CODE NUMBER OF g(a) 

Fig. 1. Potential of methods A, B and C to differentiate the true model function. Values used 
to simulate the (Y-Tcurves: E =120 kJ mol-‘, log Z=13.0 (Z in s-l), pj= 2 K miz-’ and 
/3,+, = 4 K mir-‘. 

the correlation coefficient values for g(a) closest to zero equal 1.000. Thus 
the value of the intercept can be used to choose the mechanism for the solid 
decomposition reaction that best fits the experimental data from the thermo- 
analytical techniques mentioned above. 

Nevertheless, although there are other values of intercept on the ordinate 
also close to zero, for the sake of comparison we define the potential p of the 
true model function (with which the experimental data were simulated) as 
follows: 

p_ln( luTiai’) 

where aT and ai are the values of the intercept on the ordinate closest to 
zero (from a total of 26 model functions), ur corresponding to the true 
model function. 

Figure 1 shows the results of p for each method and each model function, 
for the following values: E = 120 kJ mol-‘, log 2 = 13.0 (2 in s-i), pi = 2 
K mm-’ and &+n = 4 K mm’ with which the cu-T curves were simulated. 
It can be clearly seen that, in all cases, 
differentiate the true model function. 
order, although there is alternation in 
confirmed when E, 2 and p values 
functions 1, 6, 9, 18 and 23. 

method B has a greater potential to 
Methods C and A follow, in that 
some cases. This characteristic was 
are varied, taking as pivots model 

Sensitivity to variation of the parameters involved 

The sensitivity to variation of the parameters involved has been studied in 
the calculation of E and log Z by the analysis of variance (Tables 3 and 4). 
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TABLE 3 

F values for the analysis of variance in calculating E according to the method applied 

Method F values a 

E b =120, log Z ’ =13.0 

g(a) Pj9 P,+n 

A 1.40 0.19 
B 104.87 e 8.03 e 
C 4808.80 e 261.57 e 

a d.f. [g(a)] = 4, d.f. (log Z) = 2, d.f. (/3) = 5. 
b In kJ mol-‘. 
’ In s-l. 
d In K rnir-‘. 
e P < 0.01. 
f P < 0.05. 

E b = 120, fij” = 2, pj$, = 4 

ida> log z 

0.57 1.74 
4.07 f 223.85 e 
8.87 e 469.79 e 

The homogeneity was previously proved by the Co&ran method [31]. It is 
concluded from Table 3 that in the calculation of E the only method that 
does not show any significant difference is method A, whereas the others do, 
in every case. From Table 4 it is concluded that in the calculation of log Z 
the only method that shows significant differences is method B, except for E 
variations. Therefore, method A proves to be the only one that is statistically 
non-sensitive to parameter variations in the calculation of both E and 
log Z, method B being the most sensitive to variation in both cases. Method 
C is sensitive to variation in parameters only in the calculation of E. 

Accuracy and precision in the calculation of E and log Z parameters 

The analysis of accuracy and precision was carried out for the following 
values: E = 120 kJ mol-I, log Z = 13.0 (Z in s-l), pj = 2 K mm’ and 
,8j+n = 4 K min -’ with which a-T curves were simulated. 

TABLE 4 

F values for the analysis of variance in calculating log Z according to the method applied 

Method F values a 

Eb=120,10g zc=13.0 log Z ’ =13.0, pj” = 2, pjf, = 4 

&T(~> PI, Sj+n g(a) E 

A 1.13 0.67 2.30 0.26 
B 41.94 = 4.22 e 58.33 e 3.48 
C 2.67 2.64 1.07 3.24 

a d.f. [g(a)] = 4, d.f. (E) = 5, d.f. (8) = 5. 
b In kJ mol-‘. 
’ In s-l. 
d In K mm-‘. 
e P < 0.01. 
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TABLE 5 

Accuracy and precision in calculating E according to the different methods; values used in 
the simulation: E =120 kJ molpl, log Z =13.0 (2 in s-l), flj = 2 K min-’ and fij+, = 4 K 
mm-’ 

Method (W 
(W mol-‘) 

A 119.93 
B 119.84 
c 123.23 

’ Sta~d~d deviation. 
b Variation coefficient. 

a?E) 
(kJ mol-r) 

0.10849 
0.01397 
0.71950 

V.C. b Relative 

(%) error ( W) 

0.09 0.06 
0.01 0.13 
0.58 2.69 

TABLE 6 

Accuracy and precision irr ~cuIating log Z according to the different methods; values used 
in the simulation: E = 120 kJ mol-‘, log 2 = 13.0 (2 in S-I>, /?i = 2 K min-’ and Pi+, = 4 
K min-’ 

Method 

A 
B 
C 

(log Z> 
(2 in s-r) 

12.866 
12.974 
13.422 

We 2) 

0.01438 
0.00127 
0.00167 

V.C. 

(%) 

0.11 
0.01 
0.01 

Relative 
error (SF;) 

1.03 
0.20 
3.24 

From the results in the calculation of E shown in Table 5, it is concluded 
that method A is the most accurate, whereas method I3 is the most precise. 
In the log 2 calculation (Table 6) method I? proves to be the most accurate 
and precise, whereas A is the least precise of the three. 

CONCLUSIONS 

The methods used in &is study to calculate the kinetic parameters E and 
Z and the model function g(a) for de~ompusi~on of irreversible solids 
originated from a generaked expression such as 

where according to the method (A, C or B) u = 0, 1 or 2 and q = 1.0527, 
1.0000 or 1.0000 respectively. The analysis of the potential of the methods 
presented, based on simulated W-T ourves, proves to be highly specific in 
the choice of model fun&ion g(a) that gives the best fit to the simulated 
results, in the following order: 
Method I3 > Method C > Method A 
This meth~ology must be carefully applied to ex~e~rne~t~ data because of 
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experimental error, basically in the curve ends [24,25], which can lead to 
wrong results in the choice of g(a). 

Also, we consider that the only way to determine the process which the 
sample actually undergoes is to experiment with other techniques (isother- 
mal decomposition, electronic microscopic, X-ray diffraction, etc.), the re- 
sults of which complement the methodology discussed here. 
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