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ABSTRACT 

Computer calculations pertaining to the reaction kinetics analyses of simulated thermo- 
analytical data, generated under non-isothermal conditions, have been performed. Results 
obtained by using the two forms of the differential and integral equations descriptive of three 
different models of rate-controlled solid state reactions: phase boundary movement, nuclea- 
tion-growth and ~~-tensions diffusion, have been examined and compared. Calcula- 
tions have also been performed to examine the correctness of employing the simple diffusion 
model equations to analyze data generated by taking into consideration differences in the 
density of reactant and product. For all models studied and compared, the activation energies 
are the same, but the pre-exponential factors differ slightly. They can be interconverted by 
the use of an appropriate multiplicative constant. 

INTRODUCTION 

In carrying out computer modelling studies of multiple solid state reac- 
tions, I have had occasion to inquire into the correctness of certain mathe- 
matical expressions, descriptive of various rate-controlling phenomena, used 
in generating the reaction kinetics parameters, activation energy and pre-ex- 
ponential factor from thermoanalytical data. Since there are differences and, 
it appears, errors in the multiplicative coefficients of a number of equations 
appearing in the literature, it was decided to collate this information, and to 
examine the effects of using these different values in the analysis of 
simulated non-isothermally derived data. Specifically, the differences are 
associated with the equations describing nucleation-growth phenomena, 
phase boundary movement and three-dimensional diffusion in solid state 
reactions. With regard to the latter phenomena, it was further decided to 
examine the effect of using the simple expressions to analyze simulated data 
generated by equations which take into account differences in the molar 
volume of reactant and product. This paper will summarize the results of 
several computer calculations and, hopefully, dispel any confusion within 
the thermoanalytical community. 
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The rate of a thermally simulated solid state reaction is usually expressed 
in terms of the dimensionless extent of reaction, (Y, by eqn. (l), with the 
temperature dependent rate constant given by eqn. (2). The extent of 
reaction is obtained from the integral form, g(Ly), of the f(a) function by 
eqn. (3). 

dtw/dt = k,f( ix) (1) 

k, = AT” exp( -E,/.RT) (2) 

Generally, the temperature exponent, m, of the pre-exponential factor is set 
equal to zero, and (2) is referred to as the Arrhenius equation. This is the 
procedure which will be followed here. 

Table 1 summarizes the expressions for f(a) and g(a) for the models 
which show discrepancies. Three sets of values of the multipli$ative coeffi- 
cients k, and k, have been given; see Brown et al. [l] and Sest&k [2] for 
details. As may be quickly verified, both form I and form 2 coefficients 
satisfy eqn. (3) Even though Sest&k [2aJ discusses the various form 1 g(a) 
functions, with one exception, namely the Jander model, D3, the form 3 
expressions tabulated in his appendix [2b] do not obey this relationship. The 
reader should be aware of these errors, even though obviously typographical. 

Before surveying the use of forms 1 and 2 in the recent literature, it is 
pertinent to consider a special case, the Avrami-Erofeev model The general 
expression for the extent of reaction, given by Erofeev [3], is 

cu=l -exp(-k,t”) (4) 

However, it may easily be shown, as already indicated by Fatemi et al. [4], 
the rate constant k, = kg. Thus, from the Arrhenius equation (2), the 
correct values of the activation energy and pre-exponential factor are 

A,=A” 6.4 

E,=nE (5b) 

Khanna and Taylor [5] have also used these equations in calculating 
Avrami-Erofeev reaction kinetics parameters from isothermal DSC data 
characterizing the crystallization of various nylons. Taylor and Kharma [6] 
have discussed this point further, and used form 2 g(a) functions in their 
computerized analysis of non-isothermal DSC and TG data characterizing 
the thermal degradation of polystyrene and polyamide. 

The form 1 expressions [l(a)] are in accord with those discussed by Sharp 
et al. [7] and Heide et al. 187, and, in the main, are those used by most 
investigators. In the area of thermal degradation studies by TG, Bhatti et al. 
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[9], investigating the decomposition of acid barium oxalate by isothermal 
and non-isothermal means, employed form 1 An and Rn expressions. Bhatti 
et al. [lo] analyzed the data for the isothermal degradation of anhydrous 
barium oxalate in terms of the form 1 An model, and found n values 
varying from 2 to 0.77. Similarly, Krishnan et al. [ll], analyzing the 
isothermal data for the dehydration of zinc oxalate dihydrate, used form 1 
An expressions and found n to decrease linearly with temperature. Nair and 
James [12], in studying the non-isothermal decomposition of strontium 
nitrate, employed a number of form 1 models, and found the Mampel 
equation, Al, mathematically equivalent to first order kinetics, Fl, gave the 
best data correlation. DSC investigations of recrystallization phenomena in 
glassy materials have also employed form 1 expressions. Thus, Yardar et al. 
[13] found the isothermal recrystallization of polyvinylidene fluoride to 
follow an A3 mechanism. Lopez and Wilkes [14] investigated the recrystalli- 
zation of poly( p-phenylene sulfide) by non-isothermal linear cooling studies. 
They too proposed an Avrami-Erofeev mechanism, and found n to increase 
slightly in the range 2-3 with increase in temperature. M&lek [15], using 
multiple heating rate DSC, studied the recrystallization of germanium 
selenide glasses and analyzed the data in terms of a form 1 A3 model, and 
also as a second order mechanism. 

In a few cases, form 2 expressions have been used to evaluate thermoana- 
lytical data. Thus, Chou and Soong [16], studying the multi-stage dehydra- 
tion of hydrated aluminum sulfate by multiple heating rate TG, employed a 
wide range of form 2 expressions to analyze their data. They found the best 
data correlation when the An model, with n either 1.5 or 2, was employed. 
Bhatti et al. [17] proposed a form 2 Zhuravlev [2] model for the dehydroxyl- 
ation of magnesium hydroxide from non-isothermal DTA. Davies et al. [18] 
used a modified form 2 A4 model (k, = 3, k, = 4/3) to analyze DTA 
measurements of the transition kinetics in calcium carbonate polymorphs. 

The use of form 2 expressions may derive from the general empirical 
expression proposed by Sestak and Berggren [19], namely 

f(a) = (l- cr)Paq[ -ln(l- a)lr (6) 
At least one instrument company employs such an expression in their 
analytical software, allowing the investigator a wide choice in the analysis of 
experimental non-isothermal data. 

MODEL CALCULATIONS 

An existing Fortran program, KINMOD, developed to investigate simu- 
lated multiple reaction data under non-isothermal conditions [20] has been 
modified in order to compare form 1 and 2 analyses of single reactions. It 
also enables extent and rate of reaction data to be generated according to 
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the Carter [21] equation for three-dimensional diffusive rate-controlling 
reactions with varying molar volume ratios of product to reactant, 2, and 
subsequently analyzed according to the more simple form 1 models, D3 and 
D4. 

Table 2 summarizes the findings of form 2 Arrhenius, Kissinger and 
Friedman analyses [20,22] on form 1 generated a! - T and dcr/dt - T data, 
assuming E = 220 kJ mol- ’ and A = 1.25 X 10” rnin-i, under non-isother- 
mal conditions, with a loo-fold change in linear heating rates, for the first 
four models listed in Table 1. The n values for the exponents in the An and 
Rn model calculations were evaluated from the measured (Y,,, values 
corresponding to (da/dt)_, as previously indicated [23]. The Friedman 
analyses covered the extent of reaction range 0.05 < (Y G 0.95. Data for the 
Carter three-dimensional diffusion model [21] was generated for various 
values of 2, between 1.25 and 2.0, and analyzed according to both the form 
1 D3 and D4 models. 

DISCUSSION 

As regards the comparison of form 1 and form 2 expressions, the 
calculations confirm what is obvious from eqns. (1) and (2) and the f(a) 
expressions listed in Table 1, and which was previously indicated for the 
Avrami-Erofeev model by Fatemi et al. [4], namely 

E2 = E, 04 

A, = k*A, m 

where k” is the form 1 k2 value. In attempting to decide which of the two 
forms, 1 or 2, should be adopted by the the~o~~ytic~ community in 
order to standardize data analysis, Fatemi et al. [4] suggested a compromise, 
namely, k* should be chosen such that, at a: = 0.5, f(a) = 1. They have 
tabulated the appropriate k* values for a number of solid state models. In 
the case of non-isothermal measurements, it is suggested that, if a comprom- 
ise is to be made, a more suitable one is to define k” such that f( a)[ (Y = 

%axl = 1. %lax is essentially independent of heating rate for all models, and, 
as can easily be shown, takes the same value irrespective of the values used 
for the k, and k, multipliers in the f(a) and g(a) expressions. The 
appropriate values of k” are given on the right hand side of Table 2. For the 
two-dimensional diffusion model, D2, k* = 0.2084, while for first and 
second order reactions k* takes the values 1.634 and 4.470, respectively. 
The value of the correcting term, - f ‘( a,,) 1231, used in the generalized 
Kissinger equation [22], will also be multiplied by k*. This has the effect of 
raising the low values for the nucleation and phase boundary movement 
models An (from 0.4 to 1.0) and Rn (from 1 to 2), while lowering the values 



83 

for the diffusion models D3 (from 6.5 to 4.3) and D4 (from 6.1 to 3.6). Since 
the effect of the term in the Kissinger analysis is relatively small, the added 
affect of the k* multiplier, as regards the calculated values of E, and A,, 
will be minor. It is considered that, since the effect of using the k* 
multiplier compromise is so small, it will only add to confusion and, 
therefore, should not be employed. Furthermore, it is suggested that the use 
of form 1 expressions be universally adopted. They are, in the main, the 
forms used by most workers, and, furthermore, are as introduced by the 
various original investigators. 

As is seen in Table 2, for the phase boundary movement and diffusion 
models, there is little variance in the (Y,, values over the wide heating rate 
range used in the simulation. However, such is not the case with the 
Avrami-Erofeev modeled data. Even though the relative variation in (Y,, is 
< 0.3%, it results in a relatively wide range in the n values of the exponents 
in f(a) and g(a), namely: A3 (n = 2.97 +_ 0.5); A2 (n = 2.16 + 0.3). If such 
is the norm in analyzing experimentally error-free simulated data, it is not 
too surprising that wide variations are observed with experimental data 
[10,11,14]. 

Turning now to the three-dimensional diffusion situation, the relevant 
data for the simulated Jander (03) and Gintsling-Brounshtein (D4) models 
with E = 220 kJ mol-r and A = 1.25 x 10” mm-‘, using the form 1 
expressions, are as shown in the lower half of Table 2. As is obvious from a 
consideration of the Carter integral expression, g( (II), it is only applicable 
for 2 > 1. As pointed out by Carter in his addendum, [21b] if one follows 
the same development [21a] of the g(cu) function for the case 2 = 1, one 
arrives at the Gintsling-Brownshtein expression [24]. Figure 1 shows (a) the 
complement of the extent, (1 - a), and (b) the rate, (dcu/dt), of reaction at 
10°C min-l for form 1 model D4 (curve l), and the analogous four Carter 
models, with 2 = 1.25, 1.50, 1.75 and 2.00 (curves 2-5). The peak parame- 
ters amax, d;,, and T,, all increase linearly with increase in 2. This is true 
for all heating rates (/3). Simulated data, generated over a 100-fold change in 
p, using the Carter expressions for f(a) and g(a), has been subjected to 
Arrhenius, Kissinger and Friedman analyses, employing both form 1 mod- 
els, D3 and D4, with the results summarized in Table 2. As is seen, 
Arrhenius analyses yield a range of EA and A, values, the limiting values of 
which increase with increase in 2. The values obtained using the D3 model 
are larger than those resulting from use of the D4 model. 

More consistent values were obtained from the Kissinger and Friedman 
analyses. As is seen, the mean values ,?F and & are very close to E, and 
A,. The calculated activation energies are as selected for the simulation, 
namely, 220 kJ mol-‘. The A, and A, values decrease linearly with increase 
in Z. The correct value of the pre-exponential factor may be obtained from 
the value calculated, assuming the D4 coefficient for the - f ‘( (Y,,~) correc- 
tion term [23] in the generalized Kissinger equation [22], by use of the 
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Fig. 1. Complement of the extent {a) and rate (b) of reaction as functions of temperature at 
10°C rnin- ‘, Model D4, Z=l. 0 (l), 1.25 (2), 1.50 (3), 1.74 (4) and 2.0 (5). 

empirical relationship (8) 
A,(correct) =A.(calculated) x lOO/(lOO + k, - k,Z) (8) 

Analogous simulations to those discussed so far have been performed, 
covering the range of values E = loo-440 kJ mol-‘, A = 107-1022 min-“, 
and also, using m = 1 in the rate equation (2), A = 104-10*9 K-l min-‘. 
The resulting values of k3 and k4 are summarized in Table 3. Since only 
estimates are being made, it is considered sufficient to use the mean values, 

TABLE 3 

Model D4 Kissinger analysis. Pre-exponential factor 2 adjustment coefficients 

E/RT 
Range a 

EK m=O 

k, ki 

m=l 

k3 k, 
17-22 100 21.20 29.42 19.68 28.64 
35-40 220 19.05 27.34 20.47 28.18 
52-57 440 18.25 27.39 18.52 26.98 

a fl =l-100°C min-‘. 
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k, = 19.5 and k, = 28, in all estimations. Thus, for example, for the thermal 
degradation of calcium carbonate (2 = 2.2) under a flowing nitrogen atmo- 
sphere [25], E, = 172.4 kJ mol-l and A, = 1.97 X lo4 K-l min-‘. The 
corrected value of A, is thus 3.4 X lo4 K-i mm’. 

In summary, the form of the mathematical expressions employed for the 
functions f(a) and g(a) for the A2, A3, R2, R3, D3 and D4 solid state 
models only affects the value of the calculated pre-exponential factor, A, in 
the rate equation. Similarly, the use of the D4 model in analyzing data for 
reactions where the molar volumes of reactant and product differ also only 
affects the value of the pre-exponential factor. In all cases, the correct value 
of A may be obtained by use of the appropriate multiplicative constant. 
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