CARBOXYLIC ACIDS IN DIMETHYLSULFOXIDE. A CALORIMETRIC STUDY

R.L. BENOIT, C. LOUIS and M. FRECHETTE

Département de Chimie, Université de Montréal, C.P. 6128, Succ. A, Montréal, Québec H3C 3J7 (Canada)

(Received 26 March 1990)

ABSTRACT

Calorimetric data are presented for the solution and ionization of carboxylic acids in dimethylsulfoxide. The compounds studied include acetic acid and its trifluoro-, dichloro- and monochloro-derivatives, and benzoic acids and its 2-nitro- and 3,5-dinitro-derivatives. Ionization of the substituted acetic acids is increasingly endothermic from CF_3CO_2H (+1.8 kJ mol⁻¹) to $CHCl_2CO_2H$ (+17.6 kJ mol⁻¹), CH_2CICO_2H (+32.2 kJ mol⁻¹), and CH_3CO_2H (+44.8 kJ mol⁻¹). A useful linear correlation is found between the enthalpy and free energy of ionization of the acids. The hydrogen bond energy for the hydrogendiacetate ion is estimated as -115 kJ mol⁻¹.

INTRODUCTION

We have been studying the protonation of bases B [1] and the ionization of acids AH [2] in dimethylsulfoxide (Me₂SO), a widely used basic, dipolar aprotic solvent. Our aim is to compare the thermodynamics of both processes in Me₂SO and water, and to interpret the data in terms of enthalpy and free energy of transfer, between both solvents, for the solutes B, AH, BH⁺, A⁻, and H⁺ [2]. Such transfer parameters, the enthalpies in particular, can then be rationalized on the basis of properties of the solutes and solvents.

Carboxylic acids constitute an important class of acids. These acids, as are other uncharged acids, are much weaker in Me₂SO than in water, mainly because of the much poorer solvation of the anion A^- in Me₂SO which has no H-bond donor properties. While pK_a values for the ionization of carboxylic acids in Me₂SO have been reported [3,4,5], only a few of the corresponding enthalpies of ionization are available [6].

We present here calorimetric data for the solution and ionization in Me_2SO at 25°C of seven carboxylic acids: CF_3CO_2H , $CHCl_2CO_2H$, CH_2ClCO_2H , CH_3CO_2H , plus benzoic acid and its 2-nitro- and 3,5-dinitroderivatives. The ionization enthalpies of the acids show a useful linear correlation with their pK_a values and our data are also used to estimate the H-bond energy for the $H(CH_3CO_2)_2^-$ ion.

EXPERIMENTAL

Materials

The sources of the carboxylic acids and their purity as determined by acidimetric titration were as follows: CF_3CO_2H (Baker, $99.7 \pm 0.1\%$), $CHCl_2CO_2H$ (Fisher, $99.6 \pm 0.1\%$), CH_2CICO_2H (Fisher, $99.6 \pm 0.1\%$), CH_3CO_2H (Fisher, $99.6 \pm 0.2\%$), benzoic acid (McArthur, $100.1 \pm 0.5\%$), 2-nitrobenzoic acid (Baker, 'Baker grade'), 3,5-dinitrobenzoic acid (Fisher $99.8 \pm 0.2\%$). Tetraethylammonium acetate tetrahydrate (Eastman) was dried under vacuum for 48 h at 40 °C (to avoid decomposition) and then contained 1.0% water. Dimethylsulfoxide (Fisher, Spectroanalyzed) was treated with 4A molecular sieves and, after decantation, distilled under vacuum. Dimethylsulfoxide (Anachemia) was used as received.

Calorimetric measurements

The calorimetric measurements were made at $25.00 \pm 0.01^{\circ}$ C with an LKB Model 8725-2 isoperibol calorimeter essentially as described previously [7], using both the 25 ml and 100 ml cells. The amount of acid dissolved in the various Me₂SO solutions was deduced from the weights of the glass ampoules.

RESULTS

Solution enthalpies

The values of the heats of solution of liquid (l) or solid (c) acids were plotted against the number of moles of acids dissolved. The linear relations obtained confirm that in Me₂SO, a basic solvent, self-association of the carboxylic acid is negligible at least up to 0.40 M, the maximum concentration used here. This result, which is in agreement with ¹H NMR data [8], comes as no surprise since we have already shown that CH₃CO₂H is also a monomer below 0.4 M in sulfolane [9], even though this latter solvent is less basic than Me₂SO. The possible effect of the ionization of the acids AH on their heats of solution was also considered. For the strongest acid studied here, CF₃CO₂H, with $pK_a = 3.45$ [10], and at the lowest concentration used, the ionized fraction is 8%. However, the corresponding ionization correction is negligible because, as we shall see, the enthalpy of ionization (+1.8 kJ

(1)

TABLE 1

Acid	$\Delta H_{\rm s}^{\oplus}$	Acid	$\Delta H_{\rm s}^{ \oplus}$
$\overline{CF_{1}CO_{2}H(l)}$	-25.6	$C_6H_5CO_2H(c)$	+ 5.3 ª
CHCl ₂ CO ₂ H(1)	- 25.6	2-Nitrobenzoic(c)	+4.7
$CH_2ClCO_2H(c)$	-1.2	3,5-Dinitrobenzoic(c)	+ 3.8
CH ₃ CO ₂ H(l)	8.4		

Solution enthalpies (kJ mol⁻¹) of carboxylic acids in Me₂SO, ΔH_s^{\oplus} , at 25°C

^a Value from ref. 6.

 mol^{-1}) is much smaller than the enthalpy of solution (-25.6 kJ mol⁻¹). We can therefore conclude that the slopes of the least-square lines, giving the heats of solution of the acids against the number of moles dissolved, correspond to ΔH_{s} , the molar enthalpy of solution for reaction (1)

$$AH(1 \text{ or } c) = AH(s)$$

The values of ΔH_s , which can be approximated to ΔH_s^{\oplus} , are given in Table 1.

Ionization enthalpies

We used two different thermochemical cycles to obtain the ionization enthalpies ΔH_i corresponding to reaction (2)

$$AH(s) = A^{-}(s) + H^{+}(s)$$
 (2)

The first thermochemical cycle involves the determination of ΔH_3 , the enthalpy of solution of the acid in a 0.05 M solution of a base B according to reaction (3)

$$AH(1 \text{ or } c) + B(s) = A^{-}(s) + BH^{+}(s)$$
 (3)

The values of the heat of solution were plotted against the number of moles of acid dissolved, and the slope of the least-square line gave ΔH_3 . This value was combined with ΔH_s and with ΔH_4 , the known enthalpy of protonation of B, determined using the strong acid CF₃SO₃H [10]

$$H^{+}(s) + B(s) = BH^{+}(s)$$
 (4)

We thus obtained ΔH_i for reaction (2) as

$$\Delta H_{\rm i} = \Delta H_3 - \Delta H_{\rm s} - \Delta H_4 \tag{5}$$

This method was used to determine ΔH_i for the acids CF₃CO₂H, CH₃CO₂H, and C₆H₅CO₂H. The bases B were 4-amino-2,6-dimethylpyrimidine (Dap) (pK_a(BH⁺) = 6.38 [1]) for CF₃CO₂H, and a stronger base, tetramethyl-guanidine (TMG) (pK_a(BH⁺) = 13.4 [4,11]) for the weaker acids CH₃CO₂H and C₆H₅CO₂H. The protonation enthalpies ΔH_4 of Dap and TMG were taken as -42.4 ± 0.4 kJ mol⁻¹ and -85.8 ± 0.4 kJ mol⁻¹ respectively [1,12].

The second thermochemical cycle used is based on the formation of the stable hydrogendiacetate anion according to reaction (6)

$$HA(l \text{ or } c) + 2 CH_3CO_2^{-}(s) = H(CH_3CO_2)_2^{-}(s) + A^{-}(s)$$
(6)

The heats of solution of the acids in a 0.2 M solution of tetraethylammonium acetate were plotted against the number of moles of acid dissolved and the slope of the least-square lines gave ΔH_6 for reaction (6). We then combined ΔH_5 and ΔH_s , the enthalpy of solution of HA for reaction (1), to yield ΔH_7 for reaction (7).

$$HA(s) + 2 CH_3CO_2^{-}(s) = H(CH_3CO_2)_2^{-}(s) + A^{-}(s)$$
 (7)

We had previously determined [13] the enthalpy for reaction (8), using CF_3SO_3H , as $\Delta H_8 = -59.4$ kJ mol⁻¹

$$H^{+}(s) + 2 CH_{3}CO_{2}^{-}(s) = H(CH_{3}CO_{2})_{2}^{-}(s)$$
 (8)

Combining ΔH_8 and ΔH_7 led to the desired ionization enthalpy ΔH_i for reaction (2).

The form in which reaction (6) is written implies that the formation of symmetrical $H(CH_3CO_2)_2^-$ is favored over that of unsymmetrical anions such as $(CF_3CO_2)H(CH_3CO_2)^-$. The formation constants of the anions indicate that this is the case [13]. The proportionality between the heat evolved, when dissolving HA in 0.2 M NEt₄CH₃CO₂ (a large excess), and the number of moles of HA dissolved is also in favor of our assumption. Finally, the good agreement between the values of ΔH_i for CF₃CO₂H, CH₃CO₂H, and C₆H₅CO₂H obtained using the two thermochemical cycles provides added support. Values of ΔH_i were obtained through the hydrogendiacetate cycle for all acids except C₆H₅CO₂H. The ΔH_i values which

TABLE 2

Acid	pK _a	ΔH_i^{\oplus} (kJ mol ⁻¹)	$\Delta H_{\rm D}$ ^a (kJ mol ⁻¹)
CF ₃ CO ₂ H	3.45 ^b	+1.8	1357
CHCl ₂ CO ₂ H	apples	+17.6	1376
CH2CICO2H	8.9 °	+ 32.2	1406
CH ₃ CO ₂ H	12.6 ^{c,d}	+ 44.8	1458
C ₆ H,CO ₂ H	10.9 °, 11.1 ^d	+ 38.1	1423
2-Nitrobenzoic	8.18 °	+ 25.1	
3,5-Dinitrobenzoic	7.4 ^d	+ 24.8	

Ionization constants, pK_a and enthalpies of ionization of carboxylic acids in Me₂SO, ΔH_i^{\diamond} , at 25°C and enthalpies of deprotonation in the gas phase ΔH_D

^a Ref. 16.

^b Ref. 10.

^c Ref. 3.

^d Ref. 4.

^e Ref. 5.

can be taken as the enthalpies at infinite dilution [2], ΔH_i^{\diamond} , are listed in Table 2.

DISCUSSION

We shall first examine the data for the enthalpy of solution, ΔH_s^{\oplus} , of the acids, then their enthalpy of ionization ΔH_i^{\oplus} , and finally we shall use some of the measured data to estimate the H-bond energy for the hydrogendiace-tate ion.

Enthalpy of solution

The values of the enthalpy of solution ΔH_s^{\oplus} of the acids HA in Table 1 do not show any trend which could be attributed to changes in H-bonding interactions between the acids and the basic Me₂SO solvent. Since this is due in part to the different physical nature of the acids, even within the substituted acetic acids series, we took into account the enthalpy of vaporization or sublimation of the acids and their enthalpy of dimerization in the vapor phase to obtain the enthalpy of solvation ΔH_{gs} of the gaseous monomeric acids [13]. While a smoother trend of ΔH_{gs} (decreasing exothermicity from CHCl₂CO₂H to CH₃CO₂H) was obtained, ΔH_{gs} still includes contributions other than that of H-bonding interactions. The possible evaluation of these additional contributions to the enthalpy of solvation ΔH_{gs} of the acids [14] is presently being considered.

Enthalpy of ionization

The data in Table 2 show that the endothermicity of the ionization enthalpy of the substituted carboxylic acids increases from CF₃CO₂H (+1.8 kJ mol⁻¹) to CHCl₂CO₂H (+17.6 kJ mol⁻¹), CH₂CClCO₂H (+32.2 kJ mol⁻¹), and CH₃CO₂H (+44.8 kJ mol⁻¹). This is clearly unlike results for the same ionization process in water where the ionization enthalpies are less than ± 5 kJ mol⁻¹ and show no trend. Our ΔH_i^{\oplus} value for C₆H₅CO₂H, +38.1 kJ mol⁻¹, can be compared with a +40.7 \pm 5.5 kJ mol⁻¹ value calculated from literature data [6] using a thermochemical cycle involving CF₃SO₃H as strong acid (but not FSO₃H) and cesium (but not lithium or potassium) dimsyl as strong base. We have previously found that a value of ΔH_i for CH₃SO₃H, calculated similarly using FSO₃H, appeared to be in error [2].

Our ΔH_i^{\diamond} values from Table 2 were plotted against the available pK_a for six carboxylic acids and we obtained a fair straight line whose equation is

$$\Delta H_{i}^{\Theta} = (4.67 \pm 0.31) p K_{a} - (12.4 \pm 2.8) \qquad n = 6; \quad r = 0.991 \tag{9}$$

This is evidence of a clear enthalpy-entropy type relationship [15] since both ΔH_i^{\oplus} and pK_a are independently determined. While the significance of such relationships is somewhat unclear they are useful for predicting a value for pK_a when ΔH_i^{\oplus} is known or, vice versa. A case in point here is the estimation of the pK_a of CHCl₂CO₂H as 6.5 from its ΔH_i^{\oplus} value. While the two points for the nitro-substituted benzoic acids are on or near the correlation line, more data are needed to ascertain whether eqn. (9) correlates all substituted benzoic acids.

The corresponding correlation equation

$$\Delta G_{i}^{\oplus} = (1.20 \pm 0.08) \ \Delta H_{i}^{\oplus} + (0.09 \pm 0.18) \qquad n = 6, \quad r = 0.992 \tag{10}$$

can be compared with the equation derived for the ionization of BH^+ acids where B are aromatic nitrogen bases [1]

$$\Delta G_{i}^{\oplus} = (1.05 \pm 0.08) \ \Delta H_{i}^{\oplus} - (6.8 \pm 2.5) \tag{11}$$

We note that the slopes of the correlation lines for both classes of acids AH and BH^+ are close but additional results for other classes of acids are needed before it can be decided whether this is a general phenomenon.

We also looked for a correlation between the acidity of the carboxylic acids in the gas phase and in Me₂SO since recent values are available for $\Delta H_{\rm D}$, the gas-phase enthalpy change for the deprotonation of a large number of carboxylic acids [16]. A smooth but non-linear relation is obtained when $\Delta H_{\rm D}$ was plotted against ΔH_i° for CF₃CO₂H, CHCl₂CO₂H, CH₂ClCO₂H, CH₃CO₂H, and C₆H₅CO₂H. A linear relation would be obtained if the point for CH₃CO₂H was left out but there does not seem to be any compelling reason to reject either $\Delta H_{\rm D}$ or ΔH_i° for this acid.

H-bond energy for the hydrogendiacetate ion

When using the hydrogendiacetate cycle to obtain ΔH_i for CH₃CO₂H we found that the heat of solution of CH₃CO₂H (l) in 0.2 M NEt₄CH₃CO₂ (reaction (5)) was -23.1 kJ mol⁻¹. By combining this value with $\Delta H_{12} = +56.1$ kJ mol⁻¹ [13,17] the enthalpy change for reaction (12)

$$CH_{3}CO_{2}H(l) = CH_{3}CO_{2}H(monomer g)$$
(12)

we obtain
$$\Delta H_{13} = -74.7 \text{ kJ mol}^{-1}$$
 for reaction (13)

$$CH_3CO_2H(g) + CH_3CO_2^{-}(s) = H(CH_3CO_2)_2^{-}(s)$$
 (13)

Now, ΔH_{13} is closely related to the H-bond energy defined for reaction (14)

$$CH_{3}CO_{2}H(g) + CH_{3}CO_{2}^{-}(g) = H(CH_{3}CO_{2})_{2}^{-}(g)$$
 (14)

On account of ion-size alone, it is clear that the solvation enthalpy of $H(CH_3CO_2)_2^-$, $\Delta H_{gs}(HA_2^-)$, is smaller than that of $CH_3CO_2^-$, $\Delta H_{gs}(A^-)$, so that $\Delta H_{13} = -74.7$ kJ mol⁻¹ represents a minimum value for the H-bond

energy of the hydrogendiacetate ion according to reaction (14). We then proceeded as follows to estimate $\Delta\Delta H_{gs}$, the difference between the solvation enthalpies of CH₃CO₂⁻ and of H(CH₃CO₂)₂⁻. First we obtained -40 kJ mol⁻¹ for $\Delta\Delta H_{gs}$, the difference between the solvation enthalpy of the pair Cl⁻-HCl₂⁻ in sulfolane from a gas-phase enthalpy value of -98.3 kJ mol⁻¹ for HCl₂⁻ (reaction (14)) [18] and our -58.2 kJ mol⁻¹ value in sulfolane [7] for the reaction similar to (13). We suggest that this -40 kJ mol⁻¹ is a reasonable estimate for $\Delta\Delta H_{gs}$ for the pair CH₃CO₂⁻-H(CH₃CO₂)₂⁻ in Me₂SO. This involves both the following assumptions: first that $\Delta\Delta H_{gs}$ for both pairs Cl⁻-HCl₂⁻ and CH₃CO₂⁻-H(CH₃CO₂)₂⁻ are similar, and second that $\Delta\Delta H_{gs}$ is the same for both solvents, Me₂SO and sulfolane. Both assumptions are reasonable, considering first that the enthalpies of solvation of Cl⁻ and CH₃CO₂⁻ in Me₂SO are close [13] and second that the enthalpy of an anion-molecule reaction written as

$$X^{-}(s) + HR(g) = XHR^{-}(s)$$
(15)

may only vary by some 5 kJ mol⁻¹ from one dipolar aprotic solvent to another [19]. We finally obtained the value -115 kJ mol^{-1} for the H-bond energy of H(CH₃CO₂)₂. This value can be compared with two values in the literature, -125 kJ mol^{-1} [20] and -105 kJ mol^{-1} [21], both of which required assumptions for their derivation. The -115 kJ mol^{-1} value makes the H-bond in H(CH₃CO₂)₂ one of the strongest known [22].

ACKNOWLEDGMENTS

The financial assistance of the Natural Sciences and Engineering Council and of the Ministère de l'Education is gratefully acknowledged.

REFERENCES

- 1 R.L. Benoit and M. Fréchette, Thermochim. Acta, 127 (1988) 125.
- 2 R.L. Benoit, M. Fréchette and D. Boulet, Can. J. Chem., 67 (1989) 2148.
- 3 J. Courtot-Coupez and M. Le Démézet, Bull. Soc. Chim. Fr., (1969) 1033.
- 4 I.M. Kolthoff, M.K. Chantooni, Jr., and S. Bhowmik, J. Am. Chem. Soc., 90 (1968) 23.
- 5 I.M. Kolthoff and M.K. Chantooni, Jr., J. Am. Chem. Soc., 93 (1971) 3843.
- 6 E.M. Arnett, T.C. Moriarity, L.E. Small, J.P. Rudolph and R.P. Quirk, J. Am. Chem. Soc., 95 (1973) 1492.
- 7 R.L. Benoit, M. Rinfret and R. Domain, Inorg. Chem., 11 (1972) 2603.
- 8 H. Fujiwara, J. Phys. Chem., 78 (1974) 1662.
- 9 R.L. Benoit and S.Y. Lam, Can. J. Chem., 53 (1975) 2683.
- 10 R.L. Benoit and C. Buisson, Electrochim. Acta, 18 (1973) 105.
- 11 M. Mackinnon, unpublished results.
- 12 R.L. Benoit, D. Boulet and M. Fréchette, Can. J. Chem., 66 (1988) 3038.
- 13 C. Louis, Doctoral thesis, Université de Montréal, 1974.

- 14 R.L. Benoit and M. Fréchette, Thermochim. Acta, 126 (1988) 155.
- 15 O. Exner, Collect. Czech. Chem. Commun., 38 (1973) 799.
- 16 G. Caldwell, R. Renneboog and P. Kebarle, Can. J. Chem., 67 (1989) 611.
- 17 J. Konicek and I. Wadsö, Acta Chem. Scand., 24 (1970) 2612.
- 18 R. Yamdagni and P. Kebarle, Can. J. Chem., 52 (1974) 2449.
- 19 S.Y. Lam, C. Louis and R.L. Benoit, J. Am. Chem. Soc., 98 (1976) 1156.
- 20 R.L. Clair and T.B. McMahon, Can. J. Chem., 57 (1979) 473.
- 21 J.H. Clark and J. Emsley, J. Chem. Soc., Dalton Trans., (1974) 1125.
- 22 J. Emsley, Chem. Soc. Rev., 9 (1980) 91.