THE SYNTHESIS AND THERMAL DECOMPOSITION OF COMPLEX SALTS OF LANTHANIDE BROMIDES WITH HEXAMETHYLENETETRAMINE

MAŁGORZATA ZALEWICZ

Institute of General Chemistry, Polytechnical University, 90-924 Łódź (Poland) (Received 26 March 1990)

ABSTRACT

New complex salts of lanthanide bromides with hexamethylenetetramine of general formula $\text{LnBr}_3 \cdot 2\text{HMTA} \cdot n\text{H}_2\text{O}$ (where $\text{Ln} \equiv \text{La}$, Nd, Gd, Dy, Er; $\text{HMTA} \equiv$ hexamethylenetetramine (N₄(CH₂)₆); n = 0-12) have been obtained by crystallization and thermal decomposition. The stoichiometric compositions of the salts have been determined. On the basis of analysis of thermal curves, diffractograms and quantitative analysis of solid thermal decomposition products, the mechanism of the thermal dehydration reaction and further thermal decomposition has been established.

INTRODUCTION

In a previous study [1], chloride salts of lanthanum, praseodymium, neodymium, gadolinium, dysprosium and erbium with hexamethylene-tetramine (HMTA) of various degrees of dehydration were obtained. The thermal dehydration reactions of the chloride 12-, 10- and 8-hydrous salts of the lanthanides under investigation were determined from the findings of a thermal decomposition study [2], and changes occurring in the structure of the coordination sphere along with the dehydration process were determined on the basis of IR spectra ($4000-200 \text{ cm}^{-1}$) and Raman spectra ($3000-300 \text{ cm}^{-1}$) [1].

The present paper describes the synthesis of bromide 12-, 10- and 8-hydrous salts of lanthanum, neodymium, gadolinium, dysprosium and erbium with HMTA, and the conditions of formation of salts of lower hydration degree obtained by the thermal method. An analysis of the thermal curves of the salts obtained, heated up to $1000 \,^{\circ}$ C, is reported, and a mechanism is proposed for the thermal dehydration reaction and further decomposition of the salts, on the basis of thermal studies, diffractograms and quantitative analysis.

0040-6031/90/\$03.50 © 1990 – Elsevier Science Publishers B.V.

EXPERIMENTAL

Thermal curves were obtained using a MOM Budapest type OD-102 derivatograph. The compounds were heated over the temperature range 20-1000 °C in air, in the presence of α -Al₂O₃ as reference material. The heating rate was 5°C min⁻¹, TG sensitivity was 100 mg, DTA and DTG sensitivity was 0.1, and the weighed samples were of 100 mg each. The diffractograms for $2\theta = 2-70$ ° were obtained using a Russian DRON-1 diffractograph with a nickel filter and Cu K α radiation.

For synthesis, we used: HMTA $(N_4(CH_2)_6)$, analytically pure, from P.O.Ch., Gliwice; lanthanide oxides $(La_2O_3, Nd_2O_3, Gd_2O_3, Dy_2O_3, Er_2O_3)$, 99.9% pure, from Koch-Light Laboratory and Fluka A.G.; anhydrous alcohol and an 80% alcohol-water solution (v/v); hydrobromic acid solution HBr(2 + 1).

Preparation

Bromide salts of lanthanides with HMTA of varying degrees of hydration were obtained by crystallization from water solutions or alcohol solutions and by thermal dehydration.

Crystallization from water solutions

Solutions of lanthanide bromides were obtained by dissolving in HBr(2 + 1) the following quantities (in g) of lanthanide oxides at high temperatures: La_2O_3 , 1.62; Nd₂O₃, 1.68; Gd₂O₃, 1.81; Dy₂O₃, 1.86; Er₂O₃, 1.91. HBr(2 + 1) solution was added dropwise so that after dissolution of the lanthanide bromides the pH of the solution was 6. The lanthanide bromide solutions were then poured into saturated water solutions containing 2.8 g of HMTA each. During the intensive mixing and cooling of the samples (in a stream of cold water), precipitates were formed. These precipitates were separated from the solutions by filtering through filter paper and then dried in air at room temperature. The analysis results, which were used to determine the stoichiometric composition of the compounds obtained, are presented in Tables 1 and 2.

Crystallization from ethyl alcohol

Solutions of lanthanide bromides were prepared as above, and to these were added solutions containing 2.8 g of HMTA each, dissolved in the mixture of rectified alcohol (16 ml) and water (4 ml). During the cooling and intensive mixing, precipitates were formed, which were filtered through filter paper and dried at room temperature.

The analysis results for the compounds obtained in this way are presented in Tables 1 and 2.

Analytical data for the lanthanide bromides obtained

Compound	Ln	Temper-	Metal (Metal (%)		
		ature (°C)	Calc. Found Calc.		Found	
LnBr ₃ ·2HMTA·12H ₂ O	La	198	15.88	15.73	27.41	27.67
2	Nd	205	16.39	16.93	27.24	28.35
	Gd	201	17.62	17.76	26.84	25.34
	Dy	189	18.09	17.75	26.69	26.68
	Er	196	18.53	18.56	26.55	27.44
$LnBr_3 \cdot 2HMTA \cdot 10H_2O$	La	192	16.56	16.74	28.58	28.79
	Nd	213	17.09	17.28	28.40	28.69
	Gd	206	18.36	18.19	27.97	28.63
	Dy	195	18.85	18.64	27.80	29.98
LnBr ₃ ·2HMTA·8H ₂ O	La	204	17.31	16.96	29.87	30.17
-	Nd	218	17.85	17.31	29.67	30.51
	Gd	208	19.16	18.77	29.20	29.30
	Dy	198	19.67	18.89	29.01	29.77

If solutions containing 2.8 g of HMTA in the mixture of anhydrous alcohol (16 ml) and water (4 ml) were added to the lanthanide bromide solutions (obtained in the manner described above), the compositions of the salts obtained were as reported in Tables 1 and 2.

Analytical carbon, hydrogen, nitrogen data for the lanthanide bromides obtained

Compound	Ln	C (%)		H (%)		N (%)	
		Calc.	Found	Calc.	Found	Calc.	Found
LnBr ₃ ·2HMTA·12H ₂ O	La	16.47	17.67	5.49	5.90	12.81	12.94
	Nd	16.37	17.08	5.46	5.46	12.73	12.80
	Gd	16.13	16.76	5.38	5.41	12.54	12.68
	Dy	16.03	16.08	5.34	5.65	12.47	12.68
	Er	15.95	16.20	5.32	5.31	12.40	11.87
$LnBr_3 \cdot 2HMTA \cdot 10H_2O$	La	17.17	17.56	5.25	5.58	13.36	13.12
	Nd	17.06	17.08	5.21	5.44	13.27	12.90
	Gd	16.80	17.68	5.13	5.34	13.07	12.90
	Dy	16.70	17.40	5.10	5.63	12.99	12.64
LnBr ₃ ·2HMTA·8H ₂ O	La	17.94	17.09	4.98	5.06	13.96	12.99
-	Nd	17.82	17.22	4.95	5.12	13.86	12.80
	Gd	17.54	17.56	4.87	4.90	13.64	13.36
	Dy	17.43	17.58	4.84	4.89	13.57	13.05

Analytical data for the compounds obtained by thermal dehydration

Compound	Temper- ature (°C)	Ln (%) Calc. (Found)	Br (%) Calc. (Found)	C (%) Calc. (Found)	N (%) Calc. (Found)	H (%) Calc. (Found)
LaBr ₃ ·2HMTA·2H ₂ O	130	20.00 (19.22)	34.51 (35.41)	20.73 (20.78)	16.12 (16.36)	4.03 (4.07)
LaBr ₃ ·2HMTA·H ₂ O	110	20.53 (18.42)	35.43 (32.22)	21.28 (21.09)	16.55 (16.48)	3.55 (3.95)
NdBr ₃ ·2HMTA·4H ₂ O	130	19.60 (19.12)	32.57 (32.17)	19.56 (19.75)	15.21 (14.41)	4.34 (4.28)
NdBr ₃ ·2HMTA·2H ₂ O	140	20.61 (21.43)	34.25 (33.23)	20.57 (20.73)	16.00 (14.25)	4.00 (4.02)
NdBr ₃ ·2HMTA·H ₂ O	180	21.15 (22.35)	35.15 (32.86)	21.12 (29.30)	16.43 (16.24)	3.52 (3.71)

Thermal method

Salts of intermediate degrees of hydration were obtained by the thermal method. The 12-, 10- and 8-hydrous compounds were heated in a drier to the

Fig. 1. Thermal curves of LaBr₃·2HMTA·12H₂O salt.

Fig. 2. Thermal curves of $ErBr_3{\cdot}2HMTA{\cdot}12H_2O$ salt.

Fig. 3. Thermal curves of $DyBr_3 \cdot 2HMTA \cdot 10H_2O$ salt.

temperatures that had been determined from the thermal curves (up to the temperatures corresponding to particular stages of thermal dehydration). The temperatures of formation of particular salts are given in Tables 4, 6 and 8. Analysis results for the lanthanum and neodymium salts obtained by thermal dehydration are summarized in Table 3.

Chemical analysis

Quantitative analysis of the compounds obtained was carried out by various methods: lanthanides were determined by complexometry with ascorbic acid in the presence of xylene orange [3], bromides by the Mohr method, and nitrogen, carbon and hydrogen by elemental analysis.

Thermal studies

Thermal curves were obtained for all the salts over the temperature range 20-1000 °C. Figure 1 shows thermal curves for LaBr₃ · 2HMTA · 12H₂O.

TABLE 4

Determined and calculated mass losses for the thermal decomposition reactions of $LnBr_3$ · 2HMTA·12H₂O ($Ln \equiv La$, Nd, Gd, Dy, Er)

Compound	Temper-	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \mbox{Mass loss (\%)} \\ \hline \hline Determined \\ \hline TG \\ \end{array} \begin{array}{c} \hline Decomp. \end{array} \begin{array}{c} \mbox{Calc.} \\ \hline Calc. \\ \hline C$			
	ature	Determ	ined	Calc.	obtained
	(C)	TG	Decomp.		$(Z = LnBr_3$ ·2HMTA) ^a
LaBr ₃ ·2HMTA·12H ₂ O	90	4.5	_	4.12	Z·10H ₂ O
ý <u>-</u>	130	21.0	20.63	10.58	$Z \cdot 2H_2 O$
	180	25.0	-	24.70	Z * ¯
	900	81.0	77.17	81.37	La_2O_3
NdBr ₃ ·2HMTA·12H ₂ O	130	16.3	16.38	16.36	Z·4H ₂ O
	180	18.0	18.90	18.41	$Z \cdot 3H_2O$
	220	24.55	_	24.50	Z * _
	950	81.56	80.05	80.80	Nd ₂ O ₃
GdBr ₃ ·2HMTA·12H ₂ O	160	16.0	16.55	18.14	$Z \cdot 3H_2O$
<i>y</i> 2	218	24.0	_	24.19	Z * ¯
	900	87.0	78.44	79.70	Gd ₂ O ₃
DyBr ₃ ·2HMTA·12H ₂ O	140	18.5	18.20	18.03	$Z \cdot 3H_2O$
• • •	190	24.0	_	24.05	Z * _
	850	84	78.93	79.24	Dy_2O_3
ErBr ₃ ·2HMTA·12H ₂ O	160	18.0	17.95	17.94	$Z \cdot 3H_2O$
- -	195	24.0		23.92	Z * ¯
	800	82	78.41	78.82	Er ₂ O ₃

^a Z \star : This compound was not isolated, but a mass loss corresponding to the loss of a definite amount of H₂O was calculated from the TG curve.

At 80–90 °C, the DTA and DTG curves for lanthanum salts show a weak endothermic peak overlapped by another distinct peak visible on both the DTA (110 °C) and DTG (100 °C) curves. These transformations are accompanied by a mass loss (calculated from the TG curve) amounting to 21% at 130 °C. The next peaks on the DTA and DTG curves at 180 °C correspond to a mass loss of 3.5%, as determined from the TG curve. Another decomposition process overlaps this reaction, with peaks on both the DTA (198 °C) and DTG (195 °C) curves. At 205 °C, an exothermic peak appears on the DTA curve. At 720 °C, there is a broad peak on the DTA curve (with a maximum at 860 °C), indicating the occurrence of an exothermic reaction.

The TG curve shows continuous mass loss over the temperature range 180-900 °C.

Thermal analysis data for the decomposition of the 12-hydrous salts

Compound	Peak	Temperature (°	C)	
		DTA curve	DTG curve	
LaBr ₃ ·2HMTA·12H ₂ O	Endo	90	90	
	Endo	105	100	
	Endo	180	185	
	Endo	198	195	
	Exo	205	200	
	Exo	860	210	
NdBr ₃ ·2HMTA·12H ₂ O	Endo	120	110	
-	Endo	160	160	
	Endo	200	200	
	Endo	230	230	
	Exo	785	785	
GdBr ₃ ·2HMTA·12H ₂ O	Endo	110	100	
	Endo	200	205	
	Exo	210	218	
	Endo	230	230	
	Exo	580	785	
	Exo	785		
	Endo	900		
DyBr ₃ ·2HMTA·12H ₂ O	Endo	95	95	
	Endo	175	170	
	Exo	195	190	
	Exo	580		
ErBr ₃ ·2HMTA·12H ₂ O	Endo	90	90	
	Endo	180	180	
	Exo	190	190	
	Exo	610	610	
	Exo	720	700	

Determined and	calculated	mass losses	for the	e thermal	decomposition	reactions of	LnBr ₃ .
2HMTA · 10H ₂ O	$(Ln \equiv La,)$	Nd, Gd, Dy	()				_

Compound	Temper-	Mass 1	oss (%)		Compounds		
	ature	Deterr	nined	Calc.	obtained		
	()	TG	Decomp.		$(2 = LIBI_3$ · 2HMTA)		
LaBr ₃ ·2HMTA·10H ₂ O	110	19.0	18.93	19.38	Z·H ₂ O		
5 2	185	22.5	_	21.46	Z * ¯		
	900	-	85.36	81.37	La_2O_3		
NdBr ₃ ·2HMTA·10H ₂ O	140	17.0	16.80	17.06	$Z \cdot 2H_2O$		
	180	19.0	19.2	19.19	$Z \cdot H_2 O$		
	900	81.0	79.11	80.06	Nd_2O_3		
GdBr ₃ ·2HMTA·10H ₂ O	160	17.0	15.83	16.80	$Z \cdot 2H_2O$		
	220	21.0	_	21.0	Z * -		
	900	78.0	78.63	78.85	Gd_2O_3		
DyBr ₃ ·2HMTA·10H ₂ O	150	18.0	17.89	18.79	Z·H ₂ O		
	190	20.0	_	20.88	Z * ¯		
	900	80.5	78.61	78.36	Dy_2O_3		

Thermal analysis data for the decomposition of the 10-hydrous salts

Compound	Peak	Temperature (°	C)	
		DTA curve	DTG curve	
LaBr ₃ ·2HMTA·10H ₂ O	Endo	115	······································	•••••••
2 -	Endo	185		
	Exo	200		
	Endo	210		
NdBr ₃ ·2HMTA·10H ₂ O	Endo	105	105	
5 2	Endo	158	158	
	Endo	200	200	
	Exo	220	220	
	Exo	750	750	
GdBr ₃ ·2HMTA·10H ₂ O	Endo	120	110	
5	Endo	210	120	
	Exo	220		
	Exo	780		
	Exo	860		
DyBr ₃ ·2HMTA·10H ₂ O	Endo	98	95	
	Endo	195	190	
	Exo	205	200	
	Exo	550	205	
	Endo	700	320	
	Endo	760		

Fig. 4. Thermal curves of (a) $GdBr_3 \cdot 2HMTA \cdot 8H_2O$ and (b) $DyBr_3 \cdot 2HMTA \cdot 8H_2O$ salts.

Determined	and	calculated	mass	losses	for	the	thermal	decomposition	reactions	of	LnBr ₃ .
2HMTA · 8H	I ₂ O ($Ln \equiv La, N$	Jd, Go	d, Dy)							

Compound	Temper-	Mass loss (%)			Compounds		
	ature	Deterr	nined	Calc.	obtained		
	()	TG	Decomp.		$(\mathcal{L} = L \Pi B r_3)$ ·2HMTA)		
LaBr ₃ ·2HMTA·8H ₂ O	105	14.5	14.44	15.70	Z·H ₂ O		
	180	18.0	17.85	17.98	Z * ¯		
	900	80.0	79.65	79.70	La_2O_3		
NdBr ₃ ·2HMTA·8H ₂ O	120	15.5	15.31	15.60	Z·H ₂ O		
-	160	17.5	17.76	17.82	Z		
	800	77.0	78.71	79.18	Nd ₂ O ₃		
GdBr ₃ ·2HMTA·8H ₂ O	160	15.0	15.71	15.35	Z·H ₂ O		
	210	17.0	-	17.54	Z * ¯		
	950	79.0	78.95	77.92	Gd_2O_3		
DyBr ₃ ·2HMTA·8H ₂ O	140	17.0	17.13	17.43	Z		
	900	81.0	78.90	77.42	Dy ₂ O ₃		

Thermal analysis data for the decomposition of the 8-hydrous salts

Compound	Peak	Temperature (°	C)	
		DTA curve	DTG curve	
LaBr ₃ ·2HMTA·8H ₂ O	Endo	110	85	
	Endo	180	105	
	Endo	200	180	
	Exo	215	190	
	Exo	870		
NdBr ₃ ·2HMTA·8H ₂ O	Endo	95	80	
2 -	Endo	140	140	
	Exo	180		
	Exo	195	180	
	Exo	205	200	
	Exo	730	720	
GdBr ₃ ·2HMTA·8H ₂ O	Endo	110	110	
	Endo	205	205	
	Exo	218	218	
	Exo	220	705	
	Exo	550		
	Exo	790		
DyBr ₃ ·2HMTA·8H ₂ O	Endo	98	95	
	Endo	190	190	
	Endo	210	210	
	Exo	560	705	
	Endo	710		
	Endo	780		_

Compound	Composi	tion found (%	5)					
	Metal	Br	C	N	H			
LaBr ₃ ·2HMTA·12H ₂ O	34.73	23.77	11.28	3.92	4.07			
NdBr ₃ ·2HMTA·12H ₂ O	41.39	26.14	11.43	3.30	3.96			
$NdBr_{3} \cdot 2HMTA \cdot 10H_{2}O$	41.82	27.24	11.80	3.74	2.75			
NdBr ₃ ·2HMTA·8H ₂ O	41.59	33.89	14.14	4.16	2.17			

Analytical data for La and Nd compounds heated to 600°C

The 12-hydrous salts of neodymium and gadolinium undergo similar thermal changes, while the salts of dysprosium and erbium show two reaction stages, corresponding to water loss (Stage I at 95 (Dy) and 90 °C (Er); Stage II at 170 (Dy) and 180 °C (Er)). The second decomposition stage is overlapped by peaks indicating an exothermic process (195 °C for Dy and 190 °C for Er). The Tg curves show continuous mass loss.

In the case of the erbium salts (Fig. 2), there are two exothermic peaks on the DTA curve, with maxima at 610 and 720 °C, respectively, associated with mass loss which stabilizes at 800 °C. Data on the thermal changes of 12-hydrous salts are presented in Tables 4 and 5.

The 10-hydrous compounds show similar thermal curves for the dehydration reaction, which takes place in two stages (Stage I at 115 (La), 105 (Nd), 120 (Gd) and 98° C (Dy); Stage II at 185 (La), 158 (Nd), 210 (Gd) and

Fig. 5. Diffractograms of (a) $NdBr_3 \cdot 2HMTA \cdot 12H_2O$, (b) $NdBr_3 \cdot 2HMTA \cdot 10H_2O$ and (c) $NdBr_3 \cdot 2HMTA \cdot 8H_2O$ salts.

195°C (Dy)). The second stage is overlapped by melting of the salts and further decomposition associated with a continuous mass loss up to 900°C.

In the case of the 10-hydrous salt of dysprosium (Fig. 3), an exothermic peak is observed on the DTA curve (maximum at $550 \,^{\circ}$ C), and two endothermic peaks (700 and 760 $^{\circ}$ C) on the DTA and DTG curves.

The temperatures of the transformations of the 10-hydrous salts, and associated mass losses, are presented in Tables 6 and 7.

The 8-hydrous salts undergo a one-stage dehydration reaction. The DTA and DTG curves show endothermic peaks at 100-110 °C, and further decomposition occurs from 200 °C, accompanied by a continuous mass loss. The DTA curves for the 8-hydrous salts show peaks indicating exothermic processes, with maxima at 870 (La), 730 (Nd), 550 (Gd) and 560 °C (Dy).

The gadolinium and dysprosium salts (Fig. 4) show DTA and DTG peaks at 790 (Gd) and 710, 780 °C (Dy).

The transformation temperatures for the 8-hydrous compounds, and associated mass losses, are listed in Tables 8 and 9.

As the decomposition of the salts is associated with continuous mass loss from 200 °C, the decomposition products were determined by analysis after the salts had been heated in a muffle furnace to the temperatures at which the exothermic process begins (temperatures taken from DTA curves for particular compounds). Lanthanides were determined by complexometry in the filtrate, after leaching with water with the addition of a few drops of

Fig. 6. Diffractograms of $NdBr_3 \cdot 2HMTA \cdot 12H_2O$ salt heated to (a) 140, (b) 600 and (c) 900 °C; and (d) diffractogram of Nd_2O_3 .

 HNO_3 (earlier tests having shown that the total amount of lanthanide from the sinters passes into solution). Carbon, nitrogen, hydrogen and bromides in some salts were determined by elemental analysis. The results of these determinations are listed in Table 10.

X-ray analysis

Diffractograms were obtained for $NdBr_3 \cdot 2HMTA \cdot 12H_2O$, $NdBr_3 \cdot 2HMTA \cdot 10H_2O$ and $NdBr_3 \cdot 2HMTA \cdot 8H_2O$ (Fig. 5); for the compounds obtained by thermal decomposition (i.e. $NdBr_3 \cdot 2HMTA \cdot 12H_2O$ heated to 140, 600 and 900 °C) and Nd_2O_3 (Fig. 6); and for the $DyBr_3 \cdot 2HMTA \cdot 12H_2O$ salt and the compounds obtained by thermal decomposition (i.e. $DyBr_3 \cdot 2HMTA \cdot 12H_2O$ heated to 160, 600 and 900 °C).

DISCUSSION AND CONCLUSIONS

From analysis of the thermal curves and the sinters (i.e. the products of thermal dehydration and subsequent further decomposition), the following thermal decomposition reactions were established.

12-Hydrous compounds

$$LaBr_{3} \cdot 2HMTA \cdot 12H_{2}O \xrightarrow{90^{\circ}C} LaBr_{3} \cdot 2HMTA \cdot 10H_{2}O \xrightarrow{130^{\circ}C} \\ LaBr_{3} \cdot 2HMTA \cdot 2H_{2}O \xrightarrow{180^{\circ}C} La_{1}Br_{1,19}C_{3,37}N_{1,12}H_{16,28}O_{5,55} \xrightarrow{900^{\circ}C} \\ \end{pmatrix}$$

 $\frac{1}{2}$ La₂O₃

NdBr₃ · 2HMTA · 12H₂O
$$\xrightarrow{130^{\circ}C}$$
NdBr₃ · 2HMTA · 4H₂O $\xrightarrow{180^{\circ}C}$

$$NdBr_{3} \cdot 2HMTA \cdot 3H_{2}O \xrightarrow{220^{\circ}C} Nd_{1}Br_{1.14}C_{3.32}N_{0.82}H_{13.78}O_{2.96} \xrightarrow{950^{\circ}C}$$

 $\frac{1}{2}$ Nd₂O₃

$$LnBr_3 \cdot 2HMTA \cdot 12H_2O \xrightarrow{(1)} LnBr_3 \cdot 2HMTA \cdot 3H_2O \xrightarrow{(2)}$$

$$Ln_1Br_xC_vN_zH_pO_q\xrightarrow{(3)} \frac{1}{2}Ln_2O_3$$

	(1)	(2)	(3)	
Gd	160°C	218°C	900 ° C	
Dy	140 ° C	190 ° C	850 ° C	
Er	160°C	195°C	800 ° C	

10-Hydrous compounds

LaBr₃ · 2HMTA · 10H₂O
$$\xrightarrow{110^{\circ}C}$$
 LaBr₃ · 2HMTA · H₂O $\xrightarrow{185^{\circ}C}$
La₁Br_xC_yN_zH_pO_q $\xrightarrow{900^{\circ}C}$ $\xrightarrow{1}{2}$ La₂O₃
NdBr₃ · 2HMTA · 10H₂O $\xrightarrow{140^{\circ}C}$ NdBr₃ · 2HMTA · 2H₂O $\xrightarrow{180^{\circ}C}$
NdBr₃ · 2HMTA · H₂O $\xrightarrow{200^{\circ}C}$ Nd₁Br_{1.69}C_{3.39}N_{0.86}H_{9.48}O_{2.72} $\xrightarrow{900^{\circ}C}$
 $\xrightarrow{1}{2}$ Nd₂O₃
GdBr₃ · 2HMTA · 10H₂O $\xrightarrow{160^{\circ}C}$ GdBr₃ · 2HMTA · 2H₂O $\xrightarrow{220^{\circ}C}$
Gd₁Br_xC_yN_zH_pO_q $\xrightarrow{900^{\circ}C}$ $\xrightarrow{1}{2}$ Gd₂O₃
DyBr₃ · 2HMTA · 10H₂O $\xrightarrow{150^{\circ}C}$ DyBr₃ · 2HMTA · H₂O $\xrightarrow{190^{\circ}C}$
Dy₁Br_xC_yN_zH_pO_q $\xrightarrow{900^{\circ}C}$ $\xrightarrow{1}{2}$ Dy₂O₃

8-Hydrous compounds

LnBr₃ · 2HMTA · 8H₂O $\xrightarrow{(1)}$ LnBr₃ · 2HMTA · H₂O $\xrightarrow{(2)}$

$$\operatorname{Ln}_{1}\operatorname{Br}_{x}\operatorname{C}_{v}\operatorname{N}_{z}\operatorname{H}_{p}\operatorname{O}_{a}\xrightarrow{(3)} \xrightarrow{1}{2}\operatorname{Ln}_{2}\operatorname{O}_{3}$$

	(1)	(2)	(3)	
La	110°C	180°C	900 ° C	
Gd	160 ° C	210 ° C	950 ° C	

 $NdBr_{3} \cdot 2HMTA \cdot 8H_{2}O \xrightarrow{120 \circ C} NdBr_{3} \cdot 2HMTA \cdot H_{2}O \xrightarrow{160 \circ C}$

 $Nd_{1}Br_{1.57}C_{3.57}N_{0.90}H_{6.54}O_{0.76}\xrightarrow{800^{\circ}C} \frac{1}{2}Nd_{2}O_{3}$ $DyBr_{3} \cdot 2HMTA \cdot 8H_{2}O \xrightarrow{140^{\circ}C} DyBr_{3} \cdot 2HMTA \xrightarrow{150^{\circ}C} Dy_{1}Br_{x}C_{y}N_{z}H_{p}O_{q}$ $\xrightarrow{900^{\circ}C} \frac{1}{2}Dy_{2}O_{3}$

The changes occurring at 200-800 °C are the stage of the decomposition reaction that is most difficult to establish. Over this range there is continuous mass loss, indicating variable composition of the substance being heated. Elemental analysis of the substances produced at the temperatures at which exothermic peaks begin on the DTG curves shows the presence of carbon, nitrogen, hydrogen and bromine. The elemental analysis, lanthanide analysis and mass loss findings point to the presence of the form $Ln_1Br_xC_yN_zH_pO_q$.

Summary of results

From	Obtained		
12-hydrous lanthanum salt	2-hydrous salt		
10-hydrous	1-hydrous salt		
8-hydrous	1-hydrous salt		
12-hydrous neodymium salt	4-hydrous salt		
10-hydrous	2-hydrous salt		
8-hydrous	1-hydrous and anhydrous salts		
12-hydrous gadolinium salt	3-hydrous salt		
10-hydrous	2-hydrous salt		
8-hydrous	1-hydrous salt		
12-hydrous dysprosium salt	3-hydrous salt		
10-hydrous	1-hydrous salt		
8-hydrous	anhydrous salt		
12-hydrous erbium salt	3-hydrous salt		

The exothermic peak indicates oxidation of this compound. The composition of the compounds (the amount of lanthanide) obtained at temperatures of approximately 900 °C, and the percentage mass loss, point to lanthanide oxides (Ln_2O_3) as the final decomposition products of the salts under investigation.

The presence of lanthanide oxides was also confirmed by X-ray studies performed for some compounds. The diffractogram obtained for 12-hydrous neodymium salt heated to 160 °C (corresponding to the 4-hydrous salt) differs from that of the initial salt (Figs. 5 and 6). The diffractogram of the same salt heated to 600 °C indicates the presence of an amorphous substance at this temperature, from which Nd₂O₃ is obtained on further heating.

To sum up the results of the thermal investigations, the thermal dehydration reactions and subsequent further decomposition of the salts resulted in compounds of lower degrees of hydration than those obtained by crystallization.

ACKNOWLEDGEMENTS

The author wishes to thank Professor A. Cygański for valuable discussions, and G. Nikodemska for preparative work. The study was supported financially by the Central Programme of Fundamental Studies, No. 01.18.

REFERENCES

- 1 M. Zalewicz, Monatsh. Chem., 121 (1990) 249.
- 2 M. Zalewicz, Thermochim. Acta, 149 (1989) 133.
- 3 A.I. Busiew, W.G. Tipcowa and W. Iwanowa, Analytical Chemistry of Rare-Earth Elements, WNT, Warszawa, 1982.