EXCESS ENTHALPIES AND VOLUMES OF BINARY MIXTURES OF 1-ALKENES WITH METHANOL AND WITH ETHANOL

T.M. LETCHER, F.E.Z. SCHOONBAERT, J. MERCER-CHALMERS and A.K. PRASAD Department of Chemistry, Rhodes University, Grahamstown (South Africa) (Received 26 March 1990)

ABSTRACT

Molar excess enthalpies H_m^E have been determined using an LKB flow calorimeter, and molar excess volumes V_m^E using a Paar DMA 601 densitometer over the whole composition range, for all the binary mixtures of 1-hexene, 1-heptene and 1-octene with methanol and with ethanol at 298.15 K. The results were compared with H_m^E and V_m^E values for mixtures of an *n*-alkane with methanol and with ethanol in order to determine the effect of the double bond in the 1-alkene with alcohol mixtures.

INTRODUCTION

Previous studies have determined molar excess enthalpies H_m^E and molar excess volumes V_m^E at 298.15 K for binary mixtures of an *n*-alkane with methanol and with ethanol [1–8]. In the present work we report H_m^E and V_m^E values for binary mixtures of a 1-alkene (1-hexene, 1-heptene or 1-octene) with methanol and with ethanol. The patterns generated are compared to the patterns of H_m^E and V_m^E results for mixtures of an *n*-alkane with methanol and with ethanol. The patterns of an *n*-alkane with methanol and with ethanol. The patterns of an *n*-alkane with methanol and with ethanol. The results for mixtures of an *n*-alkane with methanol and with ethanol. The results are discussed in terms of specific interactions between the double bonds in the 1-alkene and the hydroxyl group in the alcohol.

EXPERIMENTAL

1-Hexene, 1-heptene and 1-octene were supplied by the Aldrich Chemical Co., and distilled before use. Analysis by GLC showed that total impurities were less than 0.2 mol% for the 1-hexene and 1-heptene, and less than 0.5 mol% for the 1-octene. The densities of the 1-hexene, 1-heptene and 1-octene were 0.66840, 0.69260 and 0.71070, respectively, which compared well with literature values [9].

The methanol (Merck, Urasol grade) and ethanol (absolute grade from NCP, South Africa) were dried repeatedly using the method of Lund and

0040-6031/90/\$03.50 © 1990 – Elsevier Science Publishers B.V.

Bjerrum described by Vogel [10]. The method involves refluxing with magnesium metal activated with iodine before distillation. The water impurity in both methanol and ethanol was determined by a Karl Fischer titration to be less than 0.01 mol%. The alcohols were kept in a dry box before use.

The excess volumes were measured using a vibrating tube densitometer (Paar DMA 601) method which has been described elsewhere [11]. The temperature was controlled to within 2 mK, and the densitometer calibrated for each measurement using water, methanol and ethanol. The excess molar

TABLE 1

Excess enthalpy H_m^E data for binary mixtures of 1-hexene, 1-heptene and 1-octene with methanol and with ethanol at 298.15 K

x	$\frac{H_{\rm m}^{\rm E}({\rm J}}{{\rm mol}^{-1})}$	$\frac{\delta H_{\rm m}^{\rm E} ({\rm J}}{\rm mol}^{-1})$	x	$\frac{H_{\rm m}^{\rm E}({\rm J}}{\rm mol}^{-1})$	$\frac{\delta H_{\rm m}^{\rm E} ({\rm J}}{\rm mol}^{-1})$	<i>x</i>	$H_{\rm m}^{\rm E}$ (J mol ⁻¹)	$\delta H_{\rm m}^{\rm E}$ (J mol ⁻¹)
$x1-C_6H_{12}$	$\frac{1}{x^{2}} + (1 - x)^{2}$	CH ₃ OH						
0.0473	123.6	1.0	0.3462	497.4	3.7	0.6632	573.4	-0.1
0.1249	274.6	-0.8	0.4113	529.1	4.9	0.7693	530.9	-1.2
0.1915	363.2	-4.9	0.4845	553.2	3.4	0.8166	480.9	- 5.6
0.2732	442.4	-4.0	0.5614	570.1	1.9	0.9221	285.0	1.8
$x1-C_7H_1$	$(1-x)^{4}$	CH₃OH						
0.0842	234.5	2.2	0.3346	516.3	- 3.3	0.6852	590.8	1.4
0.1388	330.7	-4.8	0.4268	560.9	5.5	0.7775	540.1	- 5.5
0.1833	399.6	1.1	0.5428	587.7	3.4	0.9065	340.0	1.1
0.2360	453.5	-0.5	0.6548	592.5	-0.7			
$x1-C_8H_1$	$(1-x)^{1}$	CH3OH						
0.0630	201.5	1.3	0.4650	596.3	1.8	0.7318	601.0	- 3.4
0.1550	385.7	-2.1	0.5394	617.4	4.5	0.8342	501.3	- 4.7
0.2161	457.3	-6.6	0.6425	626.1	1.4	0.9050	360.7	2.5
0.3216	546.3	5.3						
$x1-C_6H_{12}$	$x_{2} + (1 - x)$	C₂H₅OH						
0.1120	167.1	0.7	0.5421	575.6	2.0	0.7798	585.9	- 4.9
0.2417	332.3	- 3.0	0.6556	616.1	0.9	0.8273	550.2	6.6
0.3196	414.7	-1.1	0.7132	613.1	-4.1	0.8655	480.1	-1.6
0.4466	521.3	4.3						
$x1-C_7H_{14}$	$_{4} + (1 - x)^{4}$	C₂H₅OH						
0.0696	136.8	2.3	0.3751	518.0	4.7	0.7310	648.1	-7.7
0.1289	235.9	-0.6	0.4855	591.9	8.2	0.8105	601.9	- 4.3
0.1687	290.2	-6.8	0.6489	655.6	2.1	0.8712	513.0	3.9
0.1879	322.0	-1.8						
$x1-C_8H_{10}$	$(1-x)^{-1}$	С₂Н₅ОН						
0.0898	186.5	2.2	0.6120	660.7	7.3	0.8823	548.4	-4.9
0.1638	323.5	-3.2	0.7018	686.0	4.3	0.9102	478.7	4.2
0.2579	458.7	- 5.4	0.7891	668.3	-6.9	0.9189	448.8	4.3
0.3385	538.6	-0.3	0.8669	580.4	-6.3	0.9384	365.5	-7.5
0.4576	605.0	5.6						

enthalpies were measured using an LKB 2107 calorimeter. The method has been described elsewhere [12].

RESULTS

Results for H_m^E and V_m^E are given in Tables 1 and 2, respectively, together with the corresponding deviations δH_m^E and δV_m^E . The deviations were

TABLE 2

Excess volume V_m^E data for binary mixtures of 1-hexene, 1-heptene and 1-octene with methanol and with ethanol at 298.15 K

x	$V_{\rm m}^{\rm E}$ (cm ³ mol ⁻¹)	$10^4 \delta V_m^E (cm^3 mol^{-1})$	x	$V_{\rm m}^{\rm E}$ (cm ³ mol ⁻¹)	$\frac{10^4 \delta V_{\rm m}^{\rm E}}{(\rm cm^3}$ $\frac{10^3 \rm mol^{-1}}{\rm mol^{-1}}$	<i>x</i>	$V_{\rm m}^{\rm E}$ (cm ³ mol ⁻¹)	$\frac{10^4 \delta V_{\rm m}^{\rm E}}{(\rm cm^3 mol^{-1})}$
$\overline{x1-C_6H_{12}+(1-x)CH_3OH}$								
0.0979	0.1211	25	0.3934	0.2751	36	0.7934	0.2290	- 55
0.1434	0.1601	-18	0.5430	0.2807	75	0.8602	0.1916	-60
0.2499	0.2246	- 81	0.7162	0.2616	56	0.9414	0.1121	20
x1-C ₇ H	14 + (1 - x))CH ₃ OH						
0.0843	0.1886	6	0.4709	0.3641	-8	0.7964	0.2761	- 47
0.2066	0.3150	- 31	0.5063	0.3680	46	0.8565	0.2315	33
0.3553	0.3644	19	0.6531	0.3437	-7	0.8968	0.1800	-4
0.3586	0.3620	-7						
$x(1-C_8H$	$I_{16} + (1 - 3)$	c)CH ₃ OH						
0.0501	0.1482	13	0.4170	0.3952	-1	0.7753	0.3138	3
0.0994	0.2484	-6	0.5372	0.3833	48	0.8738	0.2177	-123
0.1588	0.3255	- 34	0.5704	0.3791	57	0.9544	0.1070	30
0.2510	0.3845	- 34	0.6809	0.3561	48			
x1-C ₆ H	(1-x))C₂H₅OH						
0.1005	0.0340	20	0.3978	0.1587	12	0.7546	0.2306	22
0.1582	0.0524	-25	0.4622	0.1862	37	0.8030	0.2092	- 49
0.2414	0.0895	- 10	0.5488	0.2138	27	0.8534	0.1817	- 39
0.2807	0.1037	- 39	0.6884	0.2366	22	0.9405	0.0994	14
x1-C ₇ H	14 + (1 - x))C ₂ H ₅ OH						
0.0854	0.0967	14	0.5024	0.2929	85	0.7871	0.2688	- 52
0.2307	0.2013	- 47	0.6620	0.3056	59	0.8997	0.1894	44
0.2629	0.2175	- 52	0,7693	0.2781	- 89	0.9603	0.0888	-4
0.3586	0.2635	42						
x1-C ₈ H	16 + (1 - x))C₂H₅OH						
0.0478	0.0841	24	0.5375	0.3527	87	0.8596	0.2450	-106
0.1042	0.1555	47	0.5488	0.3540	99	0.8955	0.2067	-73
0.2457	0.2750	- 83	0.6943	0.3381	20	0.9421	0.1448	63
0.3947	0.3342	14						

TABLE 3

Mixture	$A_r (\mathrm{J} \mathrm{mol}^{-1})$					
	$\overline{A_0}$	<i>A</i> ₁	A ₂	A ₃		
$\overline{x1-C_6H_{12}+(1-x)CH_3OH}$	2216.7	- 548.8	1506.5	- 314.9		
$x1-C_7H_{14} + (1-x)CH_3OH$	2300.8	-467.2	1793.4	-244.3		
$x1-C_8H_{16} + (1-x)CH_3OH$	2415.0	- 502.4	1955.0	-116.7		
$x1-C_6H_{12} + (1-x)C_2H_5OH$	2202.2	-1169.6	1346.3	- 926.1		
$x1-C_{7}H_{14} + (1-x)C_{2}H_{5}OH$	2366.8	-1079.2	1732.2	-1011.2		
$x1-C_8H_{16} + (1-x)C_2H_5OH$	2457.1	- 680.1	2336.6	-2204.9		

Values at 298.15 K of coefficients A, for eqn. (1)

TABLE 4

Values at 298.15 K of coefficients B_r for eqn. (1)

Mixture	$B_r \ (\mathrm{cm}^3 \ \mathrm{mol}^{-1})$					
	$\overline{B_0}$	B ₁	B	<i>B</i> ₃		
$\overline{x1-C_6H_{12}+(1-x)CH_3OH}$	1.0991	0.0467	0.7376	-0.5219		
$x1-C_7H_{14} + (1-x)CH_3OH$	1.4549	0.1019	1.0999	0.2344		
$x_{1}-C_{8}H_{16} + (1-x)CH_{3}OH$	1.5362	0.2938	1.4724	0.1275		
$x1-C_{6}H_{12} + (1-x)C_{2}H_{5}OH$	0.7833	-0.6741	0.3180	-0.1842		
$x1-C_7H_{14} + (1-x)C_2H_5OH$	1.1562	-0.2835	0.7447	-0.3740		
$x1-C_8H_{16} + (1-x)C_2H_5OH$	1.3709	-0.0895	1.0080	-0.4342		

calculated from the smoothing equation

$$\delta X_{\rm m}^{\rm E} = X_{\rm m}^{\rm E} - x(1-x) \sum_{r=0}^{r=3} X_r(1-2x)^r$$

where $X_{\rm m}^{\rm E}$ may be either $H_{\rm m}^{\rm E}$ or $V_{\rm m}^{\rm E}$, and X_r may be either A_r or B_r , respectively. The coefficients A_r and B_r are given in Tables 3 and 4.

DISCUSSION

At 298.15 K, CH₃OH does not mix in all proportions with the *n*-alkanes C_6H_{14} , C_7H_{16} and C_8H_{18} , but does mix with the 1-alkenes $1-C_6H_{12}$, $1-C_7H_{14}$ and $1-C_8H_{16}$. This could be considered as evidence for specific interactions between the double bond of the 1-alkene and the hydroxyl group of the alcohol.

The H_m^E results for the 1-C₆H₁₂, 1-C₇H₁₄ and 1-C₈H₁₆ + C₂H₅OH mixtures show skew curves with single maxima at about 0.7 mole fraction 1-alkene of 620, 660 and 700 J mol⁻¹, respectively. These H_m^E (maximum) values are between 40 and 50 J mol⁻¹ more positive than those for C₆H₁₄, C₇H₁₆ and C₈H₁₈ + C₂H₅OH mixtures [2,7,8].

150

The self association between 1-alkene molecules is relatively weak, as judged by the small positive values of $H_m^E(\text{maximum})$ for 1-C₆H₁₂ + *n*-C₆H₁₄ [13], 1-C₇H₁₄ + *n*-C₇H₁₆ [13] and 1-C₈H₁₆ + *n*-C₇H₁₆ [14] mixtures, of between 40 and 55 J mol⁻¹. The small positive enthalpy effect resulting from the dissociation of 1-alkene molecules is probably the cause of the $H_m^E(\text{maxi$ $mum})$ values for 1-alkene + C₂H₅OH mixtures being slightly more positive than those for *n*-alkane + C₂H₅OH mixtures. The fact that the $H_m^E(\text{maxi$ $mum})$ results for the 1-alkene + C₂H₅OH mixtures are only slightly more positive than those for the corresponding *n*-alkene + C₂H₅OH mixtures indicates that the association between 1-alkene and C₂H₅OH molecules is not strong. In both sets of data, the dominant feature is the dissociation of alcohol molecules, resulting in relatively large positive $H_m^E(\text{maximum})$ values.

The H_m^E (maximum) values for 1-C₆H₁₂, 1-C₇H₁₄ and 1-C₈H₁₆ + C₂H₅OH at 298 K are between 50 and 70 J mol⁻¹ more positive than those for 1-C₆H₁₂, 1-C₇H₁₄ and 1-C₈H₁₆ + CH₃OH.

The V_m^E (maximum) values for 1-C₆H₁₂, 1-C₇H₁₄ and 1-C₈H₁₆ + C₂H₅OH are 0.23, 0.30 and 0.35 cm³ mol⁻¹, respectively, and are less positive than those for 1-C₆H₁₄, 1-C₇H₁₆ and 1-C₈H₁₈ + C₂H₅OH (0.41, 0.47 and 0.52 cm³ mol⁻¹, respectively [3-6]).

The fact that the $V_m^{\rm E}$ (maximum) values obtained for the 1-alkene + C_2H_5OH mixtures studied in the present work are less positive than those for the corresponding *n*-alkane + C_2H_5OH mixtures could be a result of a packing effect induced by specific interaction of the double bond and the hydroxyl group.

The V_m^{E} (maximum) values for the 1-alkene + C₂H₅OH mixtures are less positive than those for the corresponding 1-alkene + CH₃OH mixtures.

The Flory-Patterson theory of liquid mixtures will be fitted to the V_m^E and H_m^E results presented here once the compressibilities of the 1-alkenes have been determined.

ACKNOWLEDGEMENT

The authors wish to thank the FRD (South Africa) and AECI for financial aid.

REFERENCES

- 1 C.J. Savini, D.R. Winterhalter and H.C. van Ness, J. Chem. Eng. Data, 10 (1965) 171.
- 2 R.H. Stokes and C. Burfitt, J. Chem. Thermodyn., 5 (1973) 623.
- 3 E.B. Bagley, T.P. Nelson and J.M. Scigliano, J. Phys. Chem., 77 (1973) 2794.
- 4 M. Dias-Pena and J.A.R. Renuncio, Quim. A.M., 66 (1970) 637.

- 5 K.N. Marsh and C. Burfitt, J. Chem. Thermodyn., 7 (1975) 955.
- 6 A.J. Treszezanowiecz and G.C. Benson, J. Chem. Thermodyn., 9 (1977) 1197.
- 7 G.N. Brown and W.T. Ziegler, J. Chem. Eng. Data, 24 (1979) 319.
- 8 V. Ragiani, R. Santi and S. Carra, Lincei-Rend., Sci. Fis. Mat. e Nat., 45 (1968) 540.
- 9 T.M. Letcher and R.C. Baxter, J. Chem. Thermodyn., 19 (1987) 321.
- 10 A.I. Vogel, Textbook of Practical Organic Chemistry, Longman, London, 4th edn. (Revised by B. Furniss, A.J. Hannaford, V. Rogers, P.W.G. Smith and A.R. Tatchell), 1978, p. 268.
- 11 T.M. Letcher and A. Lucas, Fluid Phase Equilibria, 8 (1982) 301.
- 12 T.M. Letcher and B.W.H. Scoones, J. Chem. Thermodyn., 14 (1982) 703.
- 13 W. Woycicki, J. Chem. Thermodyn., 7 (1975) 1007.
- 14 S.W. Lundberg, J. Chem. Eng. Data, 9 (1964) 193.