CRYSTALLINE STRUCTURE AND THERMAL STABILITY OF DOUBLE STRONTJUM AND BARIUM CARBONATES

J.M. CRIADO, M.J. DIANE2 and M. MACIAS

I~~titutv de Ciencia de Materials, Centro Mixto ~niver~i~d de Sevilfa C.S.I.C., *Apdo. 1115, 41071 Sevilla (Spain)*

M.C. PARADAS

Bpto. Quimica Inorgánica, Facultad de Quimica de la Universidad Complutense, *C&dad lhiversitaria, 28040 Madrid {Spain)*

(Received 28 March 1990)

ABSTRACT

The crystalline structures of double salts of composition $Sr_xBa_{1-x}CO_3$ have been analysed. It has been shown that this series of compounds crystallizes in the orthorhombic system over the entire composition range. Moreover, they conform to Veghard's law.

The thermal decomposition of a series of samples of composition $Sr_xBa_{1-x}CO_3$ (x = 0.2, 0.4, 0.5, 0.6 and 0.8) has been studied by means of the constant rate thermal analysis (CRTA) technique. This method permits monitoring of the vacuum and the sample temperature in such a way that both the pressure in the close vicinity of the sample and the total decomposition rate remain constant over the whole reaction range. The results obtained at a CO₂ residual pressure of 4×10^{-5} Torr show that the thermal decomposition of BaSr double salts takes place in a single step, instead of the two step process previously claimed in the literature. The comparative kinetic analysis of both CRTA and TG curves at high vacuum has allowed the reaction mechanism and the activation energy for the process to be established.

INTRODUCTION

Mixed carbonates of calcite-aragonite structure have been widely employed for the synthesis of mixed oxides used as catalysts [1,2] or in the manufacture of cathode coatings [3,4]. Fubini and Stone [5] have recently shown that $MnCO₃-CaCO₃$ forms solid solutions over the full composition **range. Ostapchenko [4] reported that CaCO,-SrCO, forms solid solutions over the O--100% range. However, Stone [l] has concluded in a recent paper** from crystallographic studies that the single phase $Sr_xCa_{1-x}CO_3$ does not precipitate at $0.2 < x < 0.5$. Several authors [3,6,7] have observed that the **DTA diagrams for coprecipitated Sr-Ba carbonates show a reversible peak that moves, as a function of the composition range, from 900°C in pure** BaCO₃ to 800[°]C in pure SrCO₃, reaching a minimum at the composition $0.4BaCO₃ \cdot 0.6SrCO₃$. Moreover, Judd and Pope [3] observed that the temperatures of the DTA peaks of $S_rCO₃$ and BaCO₃ roughly correspond with the temperature of the orthorhombic-hexagonal transformation of these carbonates. Therefore they concluded that the mixed Sr-Ba carbonates form solid solutions over the full compositional range, and they assign the DTA peak to an orthorhombic-hexagonal polymorphic transformation of the double salts. However, it is noteworthy that crystallographic data for these materials have not yet been reported.

The mechanism of the thermal decomposition of mixed carbonates of calcite-aragonite structure has merited the attention of a number of authors [8,9]. They have concluded that even under vacuum [9] the reaction takes place in two stages; the first one gives oxide and the most basic carbonate, and the second corresponds to the thermal decomposition of this carbonate. However, it is necessary to take into account that it has not been checked in previous papers whether the experimental conditions used allow proper removal of the CO, generated in the reaction. Therefore, the carbonate obtained in the first stage of the thermal decomposition of the mixed carbonates could be formed from a secondary reaction between CO, and the most basic oxide. The thermal decomposition of Sr-Ba double carbonates has been studied in the present paper by means of the recently developed constant rate thermal analysis (CRTA) technique [10] in order to avoid mass transfer phenomena. This permits, in principle, monitoring at the desired value of both the $CO₂$ pressure in the close vicinity of the sample and the total decomposition rate over the whole reaction range.

EXPERIMENTAL

Materials

Analytical reagent grade $Sr(NO₃)₂$, Ba(NO₃)₂ and $(NH₄)₂CO₃$ (Riedel) were used.

A series of samples of composition $Sr_xBa_{1-x}CO_3$ ($x = 0.2, 0.4, 0.5, 0.6$) and 0.8) was prepared. Appropriate quantities of $Sr(NO₃)$, and $Ba(NO₃)$, in the required Sr : Ba ratio, were dissolved in distilled water. A large excess of a 1 M solution of (NH_4) , CO, was then added rapidly into the nitrate solution at 90° C, with rapid stirring. The precipitate was filtered off, washed with cold distilled water and dried in air at 110°C for 48 h and at 400°C for 4 h.

Methods

The X-ray diffraction diagrams of the samples were recorded with a Siemens diffractometer using Cu $K\alpha$ radiation and a graphite monochroma-

tor. Pure silicon was used as internal standard for a precise determination of 2θ diffraction angles. The values of a, b and c for the orthorhombic cell, determined from Veghard's law, were used as starting parameters in the Lsucre method for refining the lattice parameters.

A Mettler Thermoanalyzer with a platinum crucible 16 mm in diameter was employed. The apparatus has been modified in order to monitor the furnace temperature in such a way that the total decomposition rate remains constant over the whole decomposition range. This has been attained by both controlling the residual pressure in the close vicinity of the sample and maintaining a constant value of the pumping rate, which can be selected by means of a butterfly valve. The Thermoanalyzer has been modified without impairing its original performance; therefore it is also possible to record TG diagrams.

RESULTS AND DISCUSSION

Determination of the lattice parameters

The X-ray diffraction diagrams of the Sr-Ba carbonates show that these compounds are made up of well crystallized single phases of orthorhombic structure; i.e. aragonite structure. The d-spacing and the relative intensities of the maximum diffraction lines are included in Tables 1 to 5 with their corresponding *(hkl)* indices. The lattice parameters and the volumes of the unit cells, V_0 , are collected in Table 6. The plot of V_0 versus the barium percentage of the mixed carbonate, included in Fig. 1, shows that Veghard's law is obeyed.

h k l	d	I/I_0	h k	d	I/I_{0}	
110	4.528	46	202	2.029	9	
020	4.412	18	132	1.996	18	
111	3.691	94	231	1.873	$\overline{2}$	
021	3.632	52	222	1.843	3	
200	3.624	53	310	1.723	6	
130	2.566	100	240	1.690	7	
220	2.259	36	311	1.661	15	
040	2.200	12	151	1.616	13	
221	2.130	60	330	1.510	13	
041	2.082	26				

X-ray powder diffraction pattern of Sr_{0.2}Ba_{0.8}CO₃

TABLE 1

TABLE 2

hkl	d	I/I_0	h k l	d	I/I_0	
110	4.478	33	221	2.107	55	
020	4.354	12	041	2.055	33	
111	3.648	100	202	2.099	10	
021	3.586	48	132	1.975	17	
200	2.609	35	113	1.898	8	
130	2.535	72	222	1.823	4	
131	2.344	5	310	1.706		
220	2.239	25	240	1.669	6	
040	2.179	9	311	1.648	14	

X-ray powder diffraction pattern of $Sr_{0.4}Ba_{0.6}CO_3$

TABLE 3

X-ray powder diffraction pattern of $Sr_{0.5}Ba_{0.5}CO₃$

h k l	d	$I/I^{}_0$	h k l	d	$1/I_{0}$	
110	4.447	15	221	2.097	32	
020	4.325	6	041	2.047	27	
111	3.629	100	202	1.999	22	
121	2.936	50	132	1.966	9	
200	2.596	40	330	1.486	6	
130	2.525	36	332	1.341	6	
220	2.230					

TABLE 4

X-ray powder diffraction pattern of $\text{Sr}_{0.6}\text{Ba}_{0.4}\text{CO}_3$

h k l	d	I/I_0	h k l	d	I/I_0	
110	4.441	18	040	2.159		
020	4.328	8	221	2.092	52	
111	3.620	100	041	2.030	20	
021	3.567	55	132	1.954	18	
121	2.931	4	222	1.875	9	
200	2.592	28		1.809	4	
130	2.519	62	311	1.626	12	
220	2.225	21	241	1.584	11	

TABLE 5

X-ray powder diffraction pattern of $Sr_{0.8}Ba_{0.2}CO₃$

h k l	d	I/I_0	h k l	а	I/I_0	
110	4.397	14	221	2,071	60	
111	3.566	100	041	2.014	22	
002	3.053	45	113	1.851	8	
121	2.886	4	222	1.788	4	
200	2.564	30	050	1.702	12	
022	2.485	70	241	1.585	10	
220	2.200	30	151	1.564	11	
040	2.130	8	104	1.466	11	

Sample	a		c	
$Sr_{0.2}Ba_{0.8}CO_3$	5.248(2)	8.841(3)	6.357(3)	296.9(1)
$Sr_{0.4}Ba_{0.6}CO_3$	5.220(3)	8.707(4)	6.287(4)	285.8(1)
$Sr0.5Ba0.5CO3$	5.195(2)	8.665(5)	6.258(8)	281.7(3)
$Sr_{0.6}Ba_{0.4}CO_3$	5.164(2)	8.604(4)	6.187(3)	279.9(3)
$Sr_{0.8}Ba_{0.2}CO3$	5.137(3)	8.118(3)	6.118(3)	267.8(2)

Lattice parameters (A) and volumes (A^3) of the unit cells

Thermal decomposition of Sr-Ba carbonates

Figure 2 shows, by way of example, a series of TG curves of $\rm Sr_{0.6}Ba_{0.4}CO_3$ obtained using different sample sizes and heating rates. It can be observed that the decomposition reaction takes place in a single stage if both sample size and heating rate are sufficiently low. Otherwise, the reaction occurs in two stages, as shown in Fig. 2. X-ray diffraction analysis of the partially decomposed $Sr_{0.6}Ba_{0.4}CO₃$ shows that a single phase of orthorhombic carbonate is obtained if the thermal decomposition is carried out as described for Fig. 2a, while $Sr_{0.6}Ba_{0.4}CO₃$ and BaCO₃ result if the thermal decomposition of the double carbonate occurs as shown in Fig. 2b. Therefore, it can be concluded that the thermal decomposition of Sr-Ba carbonates takes place in a single stage yielding the corresponding oxides and CO,. However, if the $CO₂$ is not efficiently removed from the close vicinity of the sample, a secondary reaction with BaO would yield BaCO₃, which would then decompose in a second stage according to Fig. 2b.

Fig. 1. Plot of the unit cell volume as a function of the composition of the sample $Sr_xBa_{1-x}CO_3$.

Fig. 2. Influence of sample weight and heating rate on the shape of the TG curve of $Sr_{0.6}Ba_{0.4}CO_3$. a, $w = 3.55$ mg, $\beta = 0.5^{\circ}C \text{ min}^{-1}$; b, $w = 50$ mg; $\beta = 4^{\circ}C \text{ min}^{-1}$.

For obtaining the TG curves of the Sr-Ba double carbonates shown in Fig. 3, the samples were previously degassed until the best vacuum available $(2 \times 10^{-5}$ Torr) was reached. A heating rate of 0.5°C min⁻¹ and sample sizes as small as 2-3 mg were used. In this way, the pressure, continuously recorded throughout the experiment, did not exceed the initial value of 2×10^{-5} Torr. A previous paper [11] has shown that in this way mass and heat transfer effects could be overcome.

The CRTA curves of $Sr_xBa_{1-x}CO_3$ included in Fig. 4 were recorded using a constant CO_2 residual pressure of 4×10^{-5} Torr, a sample size of ca. 20-30 mg and a constant decomposition rate, C, ranging from 1.2×10^{-3} to 2.6×10^{-3} min⁻¹. These experimental conditions allow heat and mass transfer phenomena to be avoided, as shown elsewhere [ll].

Fig. 3. TG curves for $Sr_xBa_{1-x}CO_3$ samples recorded at a heating rate $\beta = 0.5^{\circ}C \text{ min}^{-1}$ and a sample weight of 3-4 mg. a, $x = 1.0$; b, $x = 0.8$; c, $x = 0.6$; d, $x = 0.4$; e, $x = 0.2$; f, $x = 0$.

Fig. 4. CRTA curves for $Sr_rBa_{1-r}CO_3$ samples: a, $x = 1.0$, $C = 1.2 \times 10^{-3}$ min⁻¹; b, $x = 0.8$, $C=1.4\times10^{-3}$ min⁻¹; c, $x=0.6$, $C=1.2\times10^{-3}$ min⁻¹; d, $x=0.4$, $C=2.6\times10^{-3}$ min⁻¹; e, $x=0.2, C=1.2\times10^{-3}$ min⁻¹; f, $x=0, C=1.2\times10^{-3}$ min⁻¹

The procedure for performing the kinetic analysis of CRTA curves has been developed elsewhere. As is well known, the general expression for the rate of thermal decomposition reaction of a solid is

$$
d\alpha/dt = A \exp(-E/RT) f(\alpha)
$$
 (1)

where α is the degree of completeness of the reaction, $f(\alpha)$ is a function depending on the reaction mechanism and the other parameters have their usual meaning. The symbols given by Sharp and Wentworth [12] will be used for naming the $f(\alpha)$ function corresponding to the different kinetic models proposed in the literature for describing solid state reactions.

Bearing in mind that CRTA diagrams are obtained at a constant decomposition rate, $C = d\alpha/dt$, eqn. (1) becomes:

$$
\ln 1/f(\alpha) = \ln(A/C) - (E/RT) \tag{2}
$$

Therefore, the kinetic parameters of the reaction can be obtained from the plot of the left-hand-side of eqn. (2) vs. the reciprocal of the temperature.

The analysis of the TG diagrams of Fig. 2 has been carried out by the Coats and Redfern method [13]

$$
\ln g(\alpha) - 2 \ln T = \ln(AR/E_\beta) - (E/RT) \tag{3}
$$

where β is the heating rate and $g(\alpha)$ is a function depending on the reaction mechanism and connected with the function $f(\alpha)$ through the expression

$$
g(\alpha) = \int_0^{\alpha} d\alpha / f(\alpha) \tag{4}
$$

The plot of the left hand side of eqn. (3) versus the reciprocal of the temperature should be a straight line from whose slope and intercept the kinetic parameters could be obtained.

Mechanism	$TG (\beta = 0.5^{\circ} C \text{ min}^{-1})$			CRTA $(C = 1.4 \times 10^{-3} \text{ min}^{-1})$		
	E $(kJ \text{ mol}^{-1})$	A (\min^{-1})	Regression coefficient	E $(kJ \text{ mol}^{-1})$	A (\min^{-1})	Regression coefficient
R_{2}	167	2.4×10^{6}	-0.9910	92	1.1×10^{2}	-0.9999
R_3	180	1.5×10^7	-0.9940	121	6.4×10^{3}	-0.9999
F_1	209	8.7×10^{8}	-0.9978	192	5.0×10^{7}	-0.9999
A_{2}	196	3.1×10^5	-0.9974	84	2.5×10^{2}	-0.9364
A_{3}	180	5.4×10^{1}	-0.9968	50	2.6×10^{-3}	-0.7577
\mathbf{D}_1	276	8.1×10^{11}	-0.9800	255	4.2×10^{9}	-0.9031
D ₂	318	1.1×10^{14}	-0.9878	201	2.6×10^7	-0.9526
D_3	376	3.8×10^{16}	-0.9946	297	5.8×10^{11}	-0.9765
$\mathbf{D}_\mathbf{a}$	339	2.8×10^{14}	-0.9905	234	3.1×10^{8}	-0.9642

Kinetic parameters of the thermal decomposition of $Sr_{0.8}Ba_{0.2}CO₃$ calculated from TG and CRTA curves by assuming different kinetic laws

In a previous paper [14] it was proved theoretically that the kinetic analysis of two thermoanalytical curves obtained with a linear heating programme and the CRTA technique, respectively, would provide an excellent procedure for establishing the correct mechanism of solid state reactions. This is because a good agreement between the kinetic parameters determined from both techniques is obtained only when the kinetic equations of the actual reaction mechanism are used for performing the calculations. Accordingly, the kinetic analysis of the CRTA and the TG curve for the sample Sr_0, Ba_0, CO_3 , included in Figs. 3 and 4 has been carried out by means of eqns. (1) and (3), respectively, after substituting the $f(\alpha)$ and $g(\alpha)$ functions of the mechanism of solid state reactions more usually employed in the literature.

The results obtained are included in Table 7. We can see that both a reasonable good agreement between the kinetic parameters calculated from TG and CRTA diagrams and satisfactory regression coefficients are obtained only if it is assumed that the reaction follows first order kinetics (F_1) mechanism).

Similar results have been obtained by analysing CRTA and TG curves of all the other Sr-Ba double carbonate samples studied in the present paper. The activation energies and the Arrhenius pre-exponential factors calculated from the CRTA curves in Fig. 4, assuming an F_1 kinetic model, are included in Table 8. This table also includes, for comparison, the kinetic parameters determined by Criado et al. [15] for the thermal decomposition of SrCO, and BaCO, following the method described here.

The results reported seem to show rather clearly that the thermal decomposition of Sr-Ba double carbonates takes place through a single step, contrary to previous statements in the literature [8,9]. In fact, a single step is

TABLE 7

TABLE 8

Sample	Е	A	
	$(kJ \text{ mol}^{-1})$	(min^{-1})	
SrCO ₃	188	4.8×10^7	
$Sr_{0.8}Ba_{0.2}CO_3$	192	5.0×10^7	
$Sr_{0.6}Ba_{0.4}CO_3$	247	3.3×10^{10}	
$Sr_{0.4}Ba_{0.6}CO_3$	213	3.6×10^8	
$Sr_{0.2}Ba_{0.8}CO_3$	222	3.0×10^{8}	
BaCO ₃	276	1.0×10^{11}	

Kinetic analysis of CRTA curves of Sr-Ba double carbonates assuming a first order law

observed in both CRTA and TG diagrams shown in Figs. 3 and 4, and a very good **fit** of the experimental data to the kinetic equation of a single reaction mechanism has been obtained.

Data in Table 8 seem to indicate that the activation energies for the thermal decomposition of the series of samples $Sr_rBa_{1-r}CO₃$ increase on increasing the amount of Ba^{2+} in the double salt with the exception of only the sample $Sr_{0.6}Ba_{0.4}CO₃$, which gives a value somewhat higher than would be expected. In order to explain the anomalous behaviour of this sample it is necessary to consider that Sr-Ba double carbonates undergo an orthorhombic-hexagonal phase change ($\alpha \rightleftharpoons \beta$) at a temperature depending on the Sr : Ba ratio in the sample [3,7]. A plot of the temperature of the phase change against the percentage of Ba^{2+} follows a curve which passes through a minimum (700-750 $^{\circ}$ C) at a composition close to 40 mol% of barium carbonate. The phase change temperature of this last sample is below the temperature range at which its thermal decomposition is recorded in the current paper. In other words, it may be possible that the sample with a $Sr: Ba$ ratio of $0.6:0.4$ has an hexagonal structure when it undergoes thermal decomposition while the others have an orthorhombic structure. The anomalous behaviour of $Sr_{0.6}Ba_{0.4}CO₃$ could perhaps then be interpreted by considering that the activation energy for the thermal decomposition of the hexagonal structure of Sr-Ba double carbonates might be somewhat higher than the corresponding energy for the orthorhombic phase.

REFERENCES

- **1 F.S. Stone and M.M. Ramirez de Agudelo, Proc. 9th Int. Symp. on Reactivity of Solids, Elsevier Amsterdam, 1980, p. 522.**
- **2 B. Fubini and F.S. Stone, J. Chem. Sot., Faraday Trans. 1, 79 (1983) 1215.**
- **3 M.D. Judd and M.I. Pope, J. Appl. Chem. Biotechnol., 21 (1971) 285.**
- **4 E.P. Ostapchenko, Izv. Akad. Nauk SSSR, Ser. Fiz., 20 (1956) 1105.**
- **5 B. Fubini and F.S. Stone, in P. Barrett and L.C. Dufour (Eds.), Proc. 10th Int. Symp. on Reactivity of Solids, Elsevier Amsterdam, 1985, p. 85.**
- 6 M.D. Judd and M.I. Pope, J. Appl. Chem. Biotechnol., 21 (1971) 149.
- 7 J.M. Criado, C. Barriga and J. Morales, Bol. Soc. Esp. Ceram. Vidrio, 22 (2) (1983) 77.
- 8 M.E. Garcia-Clavel, F. Buriel-Marti and M. Rodriguez de la Peña; Inf. Quim. Anal. Pura Apl. Ind., (1970) 31.
- 9 M.D. Judd and M.I. Pope, in R.F. Schucanker and P.D. Carn (Eds.), Proc. 2nd Int. Conf. on Thermal Analysis, Academic Press, New York, 1969, p. 1423.
- 10 J. Rouquerol, J. Therm. Anal., 5 (1973) 203.
- 11 J.M. Criado, F. Rouquerol and J. Rouquerol, Thermochim. Acta, 38 (1980) 109.
- 12 J.M. Sharp and S.A. Wentworth, Anal Chem., 41 (1969) 2050.
- 13 A.W. Coats and J.P. Redfern, Nature, 201 (1964) 68.
- 14 J.M. Criado, A. Ortega and F.J. Gotor, Thermochim. Acta, 38 (1980) 171.
- 15 J.M. Criado, F. Rouquerol and J. Rouquerol, Thermochim. Acta, 38 (1980) 117.