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It is shown that the kinetic compensation effect mathematically results from the exponen- 
tial form of the rate constant. A change of activation energy is thus compensated by the same 
change in temperature or in the logarithm of the pre-exponential factor. 

INTRODUCTION 

In the field of kinetic study on solid-state processes, the physical meaning 
of Arrhenius parameters is rather dubious [1,2], because of the occurrence of 
a linear relationship between the logarithm of the apparent pre-exponential 
factor In Aapp and the activation energy Eapp obtained experimentally [3], 
even if the process proceeds with a negligible change in sample and measur- 
ing conditions. This fatal problem is known as the kinetic compensation 
effect (KCE) and many workers have so far tried to solve it from theoretical 
[4-91 and experimental [lo-141 points of view. This problem was originally 
pointed out by Zawadski and Bretzsnajder [15] for the thermal decomposi- 
tion of CaCO, under various pressures of CO,. They determined the 
dependence in the form Eapp = p( P,,). Afterwards it was theoretically 
explained by Pavlyuchenko and Prodan [16], reinvestigated by Wist [17] and 
analysed from the viewpoint of chemical statistics by Roginskij and Chajt 
[18]. In fact, this is in agreement with a known dependence of the rate of the 
process da/dt = dr upon the pressure P, which is expressed in the form of a 
multiplying function p(P) to the rate constant k(T). Another aspect of the 
KCE is the effect of varying defect concentrations as shown by Olejnikov et 
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al. 1191 for the formation process of Mg-ferrite under different partial 
pressures of oxygen. Associated findings were noticed by Solymosi et al. [20] 
and Dollimore and Rogers [21]. Guarrini et al. [22] pointed out that the 
non-linearity of the Arrhenius plot increases with the sample mass, and 
recommended the extrapolation to zero mass. Hullet [23] made a search for 
the reasons for possible non-linearity, determining that any deviation from a 
straight line in the plot In k(T) vs. reciprocal absolute temperature l/T is 
to be considered as almost certain evidence that the observed process is 
complex. The alternative paths of two or more simultaneous processes with 
different E values are concave upwards while those for the consecutive case 
are concave downwards. Exner [4] first pointed out that it is not correct to 
determine the KCE by a linear regression of Eapp vs. In Aapp because these 
quantities are mutually dependent, both being derived from the original 
kinetic data. 

The deficiencies in the Arrhenius equation have been pointed out as a 
cause of the KCE [24-261. At the same time, experimental and computa- 
tional errors have also been suggested by some authors [27,28]. In contrast to 
these critical contributions to the present kinetic treatments of solid-state 
processes, some authors have explained the KCE in connection with various 
physicochemical factors [11,14]. One of the most important points under 
discussion is whether or not the existence of the KCE implies some physi- 
cochemical significance. Recently, Agrawal proposed to divide the KCE into 
two sets by the existence of an isokinetic point on the In k(T) vs. l/T 
coordinate: one arising from physicochemical factors and the other from 
computational and experimental artifacts [29]. Since k(T) and T can be 
independently determined, the plot of In k(T) vs. l/T is statistically 
correct. However, Agrawal’s procedure [29] of distinguishing a false KCE 
from a true one was criticized by Sestak [30] and shown by Zsako and 
Somasekharan [31] not to be correct. Moreover F’ysiak and Sabalski [32] had 
already mathematically proved that an isokinetic point appears whenever a 
linear relationship is observed between In Aapp and Eapp. Accordingly, 
although it is reasonable to exclude the KCE which does not exhibit an 
isokinetic point from the present argument, there is no physical explanation 
for the KCE which does exhibit an isokinetic point resulting from physi- 
cochemical factors [30]. On the other hand, Agrawal emphasized the useful- 
ness of the KCE in kinetic research by following up on the previous studies 
which explained the KCE in connection with various physicochemical 
factors [33]. It seems to be necessary to inspect the background of the KCE 
to confirm the possibility of using the relation for chemical research. 

In this study, we attempt to prove mathematically that the KCE is latent 
in the present orthodoxy on the kinetics of solid-state processes. On the 
basis of the mathematical consequence, the possibility of using the KCE for 
chemical research is briefly discussed. 
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MATHEMATICAL CONSEQUENCES 

For the kinetic description of 
equation can be applied [3]: 

where ar is the fractional reaction, _ f(a) is a kinetic model function derived 
on the basis of physic~g~met~cal assumptions 13,341 on the development 
of the reaction boundary between the initial substance and the product, and 
p(P) is the pressure constant possibly dependent on other force-fields 
(intensive properties) [3,6]. From eqn. (1) we can obtain the equation 

heterogeneous processes, the following 

dlnk(T) + 1 
k(T)= dT 

Fop0 

with 

F(a)=* 

(2) 

where cp is the constant heating rate and the property of the F( cu) function is 
shown elsewhere [34,35]. The temperature term k(T) usually takes the form 
of the Arrhenius equation [3]: 

k(T) =A exp -& 
i i 

The symbols A, E: and R are conventionally the pre-exponential factor, 
activation energy and gas (or Boltzmann) constant, respectively. Taking the 
first derivative of In k(T) with respect to T, we can obtain the following 
from eqn. (4): 

dlnk(T) E 1 
dT =RF 

Replacing the term d In k(T)/dT in eqn. (2) by eqn. (5) 

(5) 

From eqns. (4) and (6) 

A exp 

Taking logarithms of eqn. (7) we can obtain the equation 

E 
InA=m+In -2 

i 

1 
RE;&)m 1 

Equation (8) can be reproduced as 

(7) 

(8) 

E+AE 1 
In A-tAIn A= T+ATx+const. (9) 
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In eqn. (9) if the E term is constant, i.e. AE = 0, the value of AT decreases 
with increasing A In A. On the contrary, the value of AT increases with AE 
if the In A term is constant, i.e. A In A = 0. These relationships deduced 
from eqn. (9) are in good agreement with the previous studies for the 
relationship between In A, E and T by using the theoretical plots of (Y 
against T [36-381. 

On the other hand, if the T term is constant, i.e. AT = 0, a linear 
relationship can be observed between (In A + A In A) and (E + AE). Then 
eqn. (9) is equivalent to the well-known kinetic compensation equation 

In A=aE+b (10) 

Some important consequences already noticed by Sestak [36] follows from 
eqn. (9) for the calculated value of E if the temperature is measured 
incorrectly. For example, in TG the temperature sensor is often positioned 
close to but not touching the sample, so that the difference AT between the 
correct (sample) and the measured (sensor) temperatures depends on the 
heating condition and the surface reflectance of the sample holder. In 
general, AT is positive for endothermic and negative for exothermic reac- 
tions, and AE and/or A In A are affected by the variation in AT, cf. eqn. 
(9). For uncontrolled changes of temperature AT # + At, the value of E is 
found to follow the same trend with the resulting (apparent) value being a 
certain mean value. 

In contrast to the requirement of a wide temperature interval for reliable 
determination of the Arrhenius parameters, a narrow range of temperature is 
sometimes necessary to satisfy a practical requirement. Over such a small 
temperature interval the temperature term in eqn. (9) seems to be constant 
and In A and E become interdependent according to eqn. (10). In addition, 
when eqn. (10) is satisfied by more than one set of the apparent Arrhenius 
parameters obtained for a series of processes, the temperature term in eqn. 
(9) is apparently equivalent to the so-called isokinetic temperature T:,,,. Then 
eqn. (8) can be rewritten 

E 
In A = RTiso +ln 1 
The logarithmic term in the right-hand side of eqn. (11) is equivalent to the 
logarithm of the isokinetic rate constant In ki,,. Thus we can finally obtain 
the equation 

1 
In A = RTiI,, E + In kiso 02) 

It is clear from eqn. (12) that the KCE can be defined as the linear 
relationship between In Aapp and Eapp, with a slope of l/RTiso and an 
intercept of In kiso. It should be noted from eqn. (11) that in a strict sense 
this effect relies upon the “isokinetic hypothesis”, i.e. the kinetic obedience 
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remains constant. This explains the empirical fact that the KCE, which is 
established provided the rate law is constant, is more quantitative [39,40]. In 
addition, eqn. (9) apparently includes not only terms of In A and E, but 
also at least one T term, as the variable. In this sense, the KCE, eqn. (lo), 
can be understood as a projection of the interrelationship between In A, E 
and T onto the In A vs. E plane. Although it is necessary to investigate the 
physical meaning of the T term, it seems to be connected not only to the 
absolute temperature but also to the working temperature interval [30,40]. 

DISCUSSION 

As can be seen from the above results, the existence of the KCE and/or 
isoparametric relationship itself can be explained as a mere mathematical 
consequence. It should also be considered, however, that the KCE can be 
created by projecting the effect of change in some physicochemical factors 
and/or errors of measurements. This is dependent on the sample and 
measuring conditions, i.e. on the T term, and affects the simple relation 
expressed by eqn. (10) through the mathematical background described 
above. In order to remove this odd effect it is necessary to throw light on the 
projection system mathematically, because any physicochemical explanation 
for the apparent Arrhenius parameters is not fully quantitative without 
considering the KCE. 

On the other hand, some interesting attempts to detect differences in the 
kinetics of homologous reactions by using the KCE have been reported [41]. 
Among them it is worth noting the studies of kinetic comparison by using 
the compensation parameters a and b, and the isokinetic point (In ki,,, 
l/qSO) [33,42]. These attempts are based on the premise that the kinetics of 
a given process can be characterized by the isokinetic point. If the projection 
system expressed by eqn. (9) were a mathematical law, it should be possible 
to detect the kinetic difference in these processes under qualitative compari- 
son. However, since the KCE is a mere mathematical consequence, it is 
difficult to discuss quantitatively the difference in the KCE between ho- 
mologous reactions as a direct consequence of various physicochemical 
factors. Moreover, as discussed elsewhere, thermoanalytical data include 
inevitable errors [36,43-461. It should be understood that variations in the 
shape and position of the thermoanalytical curves with slight changes in the 
sample and measuring conditions, which are the direct cause of the KCE, 
are the sum of the change in some physicochemical factors and experimental 
errors. Accordingly, the isokinetic point is the characteristic point depending 
not only on the process itself but also on the working condition. 

It has been reported that “mis-estimation” of kinetic obedience is also 
responsible for the KCE [6,9]. If we obtained the Arrhenius parameters by 
assuming various f(a) including a correct one, these sets of Arrhenius 
parameters would show the KCE [47-491. This is an example of the KCE 



observed among the true and false kinetic model functions. Using the false 
kinetic model h(a) instead of the required one f( (Y), the following equation 
is obtained, cf. eqns. (1) and (4): 

From eqns. (1) and (13), it follows that 

Aln A=%+ 

if A In A = 0 

AE = - RT 

or if AE=O 

PW A In A = In f(a) + In - 
[ 1 h(a) 

where A In A =ln A,,-In A 
the relationship 

AlnA=aAE 

and AE = Eapp - E. Equation (10) leads to 

07) 

where a = l/RTiso. From eqns. (14) and (17) the distortion in the Arrhenius 
parameters by missing p(P) or false h(a) terms can be expressed as follows 

(13) 

(16) 

and 

T 
‘In A= T-.Tiw 09) 

Agrawal [33] stated that the use of incorrect model relations has to be 
explained before the KCE can be discussed as an artifact. We think that one 
of the most important problems is whether or not the solid-state processes 
can be fully described by the present oversimplifi~ kinetic model functions 
f(a) [34]. In addition, the correct ff a) is sometimes difficult to ascertain in 
a practical study [40] and generally can only be established on the basis of 
the predetermined value of E [35] ( i.e. from several runs using the Kissinger 
[SO] or Ozawa [Sl] method). Similarly, the “mis-use” of the calculation 
methods beyond their implicit restriction can be recognized as a cause of the 
KCE 128,451. These two problems in kinetic calculation are likely to distort 
the projection system itself. 

The simple relationship of eqn. (10) seems to result from complex 
interaction of more than one cause [52,53], which is supported by the fact 
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that the compensation parameters can also change depending on the range 
of experimental conditions examined for the process under study 1491. In 
order to discuss the KCE more qu~titatively and in connation with the 
respective causes, it is necessary to examine these effects at predetermined 
experimental and computational conditions. At least, the examination of 
KCE among the Arrhenius parameters obtained by different authors using 
different TA systems, and computational methods under different sample 
and experimental conditions, would be meaningless for any further quantita- 
tive discussion. 
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