Thermodynamics of tautomeric solutions: vapour-liquid equilibrium for acetylacetone-alcohol mixtures

Isamu Nagata * and Shigeo Miyata

Department of Chemistry and Chemical Engineering, Division of Physical Sciences, Kanazawa University, Kodatsuno 2-40-20, Kanazawa 920 (Japan)

(Received 8 October 1990)

Abstract

Isothermal vapour-liquid equilibrium data for systems containing the keto and enol tautomers of acetylacetone and an alcohol are reproduced using a chemical model. The model uses the thermodynamic equilibrium constant for tautomerisation, the four association constants for the alcohol, the solvation constants between the tautomers and the alcohol and the NRTL model to describe the activity coefficients of the pseudo-three components. Calculated vapour-liquid equilibrium values compare well with literature ones for six binary systems.

INTRODUCTION

Acetylacetone (2,4-pentanedione) has simultaneously keto and enol forms due to tautomerism. These two isomers cannot be separated. A stoichiometric binary liquid mixture containing acetylacetone may be regarded as a pseudo-ternary solution composed of keto tautomer, enol tautomer and an organic solvent. The keto fraction of acetylacetone depends not only on temperature but also the concentration of organic solvent. In a previous paper [1], we presented a chemical model to represent binary isothermal vapour-liquid equilibrium data at 25°C for mixtures of acetylacetone with benzene, cyclohexane, carbon tetrachloride, toluene and chloroform. Kato [2] measured binary isothermal vapour-liquid equilibria for acetylacetonealcohol mixtures and correlated the experimental activity coefficients using the UNIFAC model. The association model of alcohol solutions based on mole fraction statistics has been published from this laboratory [3].

In this paper we propose an extended model as a combination of the two chemical models in order to obtain good representation of binary isothermal vapour-liquid equilibria for solutions of acetylacetone with methanol, ethanol, propanols, 2-butanol and 2-methyl-2-propanol.

^{*} Author to whom correspondence should be addressed.

SOLUTION MODEL

The vapour-liquid equilibrium for the pseudo-ternary systems composed of the enol and keto tautomers of acetylacetone and an alcohol can be correlated from the equation

$$P = P_{\rm E}^0 x_{\rm E} \gamma_{\rm E} + P_{\rm K}^0 x_{\rm K} \gamma_{\rm K} + P_{\rm A}^0 x_{\rm A} \gamma_{\rm A} \tag{1}$$

where vapour-phase ideality is assumed and the activity coefficients of three constituents are given by the NRTL equation [4]

$$\ln \gamma_i = \frac{\sum\limits_{j}^{N} \tau_{ji} G_{ji} x_j}{\sum\limits_{k}^{N} G_{ki} x_k} + \sum\limits_{j}^{N} \frac{x_j G_{ij}}{\sum\limits_{k}^{N} G_{kj} x_k} \left(\tau_{ij} - \frac{\sum\limits_{l}^{N} x_l \tau_{lj} G_{lj}}{\sum\limits_{k}^{N} G_{kj} x_k} \right)$$
(2)

with

$$\tau_{ij} = a_{ij}/T \tag{3}$$

$$G_{ij} = \exp(-\alpha_{ij}\tau_{ij}) \tag{4}$$

All the nonrandomness parameters $\alpha_{ii}(=\alpha_{ji})$ are set as 0.3.

The keto and enol tautomers satisfy the thermodynamic equilibrium constant $K_{\rm T}$ as defined by

$$K_{\rm T} = \left(x_{\rm K}^0 \gamma_{\rm K}^0 / x_{\rm E}^0 \gamma_{\rm E}^0 \right) = \left(x_{\rm K} \gamma_{\rm K} \right) / \left(x_{\rm E} \gamma_{\rm E} \right)$$
(5)

From the vapour pressure (P^0) and the equilibrium constant (x_K^0/x_E^0) data for pure acetylacetone over the temperature range 22.02-40.01°C [5], we [1] estimated the NRTL energy parameters a_{KE} and a_{EK} and coefficients of the vapour pressures of the keto and enol tautomers given by the equation

$$\log P_i^0 = A_i^0 - B_i^0 / T \qquad i = K, E$$
(6)

These are $a_{KE} = 94.87$ K, $a_{EK} = -39.02$ K, $A_K^0 = 8.5568$, $B_K^0 = 2391.03$, $A_F^0 = 8.2710$ and $B_F^0 = 2154.90$.

According to the chemical model for the linear or cyclic self-association of alcohol molecules [3], four association constants are defined in terms of the mole fractions of the alcohol species.

$$K_{A_2} = x_{A_2} / x_{A_1}^2$$
 for $A_1 + A_1 = A_2$ (7)

$$K_{A_3} = x_{A_3} / x_{A_2} x_{A_1}$$
 for $A_1 + A_2 = A_3$ (8)

$$K_{A} = x_{A_{i+1}} / x_{A_{1}} x_{A_{i}}$$
 for $A_{1} + A_{i} = A_{i+1}, i \ge 3$ (9)

$$K_{cy} = \theta/i = x_{A_i}(cyclic)/x_{A_i}(open) \qquad \text{for } A_i(open) = A_i(cyclic), \ i > 4$$
(10)

The solvation constants between alcohol *i*mers and the tautomers are defined by

$$K_{AK} = x_{A_iK} / x_{A_i} x_K \qquad \text{for } A_i + K = A_i K \tag{11}$$

$$K_{AE} = x_{A,E} / x_{A,i} x_E \qquad \text{for } A_i + E = A_i E \tag{12}$$

The stoichiometric mole fractions of the tautomers and the alcohol are expressed in terms of their monomer mole fractions and the equilibrium constants.

$$x_{\rm K} = \frac{\left\{ x_{\rm K_1} + K_{\rm AK} x_{\rm K_1} \left[x_{\rm A_1} + K_{\rm A_2} x_{\rm A_1}^2 + \frac{K_{\rm A_2} K_{\rm A_3} x_{\rm A_1}^3}{(1-z)} \right] \right\}}{S}$$
(13)

$$x_{\rm E} = \frac{\left\langle x_{\rm E_1} + K_{\rm AE} x_{\rm E_1} \left[x_{\rm A_1} + K_{\rm A_2} x_{\rm A_1}^2 + \frac{K_{\rm A_2} K_{\rm A_3} x_{\rm A_1}^3}{(1-z)} \right] \right\rangle}{S}$$
(14)

$$x_{A} = \left\langle \left(1 + K_{AK} x_{K_{1}} + K_{AE} x_{E_{1}}\right) \left[x_{A_{1}} + 2K_{A_{2}} x_{A_{1}}^{2} + \frac{K_{A_{2}} K_{A_{3}} x_{A_{1}}^{3} (3 - 2z)}{(1 - z)^{2}} \right] + \frac{K_{A_{2}} K_{A_{3}} K_{A}^{2} \theta x_{A_{1}}^{5}}{(1 - z)} \right\} / S$$
(15)

where $z = K_A x_{A_1}$ and the sum S is given by

$$S = x_{K_{1}} + x_{E_{1}} + \left(K_{AK}x_{K_{1}} + K_{AE}x_{E_{1}}\right) \left[x_{A_{1}} + K_{A_{2}}x_{A_{1}}^{2} + \frac{K_{A_{2}}K_{A_{3}}x_{A_{1}}^{3}}{(1-z)}\right] + \left(1 + K_{AK}x_{K_{1}} + K_{AE}x_{E_{1}}\right) \left[x_{A_{1}} + 2K_{A_{2}}x_{A_{1}}^{2} + \frac{K_{A_{2}}K_{A_{3}}x_{A_{1}}^{3}(3-2z)}{(1-z)^{2}}\right] + \frac{K_{A_{2}}K_{A_{3}}K_{A}^{2}\theta x_{A_{1}}^{5}}{(1-z)}$$
(16)

The monomer mole fraction of the pure alcohol x_A^0 is obtained from eqn. (17).

$$x_{A_{1}}^{0} + K_{A_{2}} x_{A_{1}}^{02} + \frac{K_{A_{2}} K_{A_{3}} x_{A_{1}}^{03}}{(1 - z^{0})} - \frac{K_{A_{2}} K_{A_{3}} \theta}{K_{A}^{3}} \times \left[\ln(1 - z^{0}) + z^{0} + \frac{z^{02}}{2} + \frac{z^{03}}{3} + \frac{z^{04}}{4} \right] = 1$$
(17)

The chemical potentials of the stoichiometric and true species must be equal [6]. The activity coefficients of the tautomers of acetylacetone and the alcohol can be expressed as the sum of chemical and physical contribution terms.

$$\ln \gamma_i = (\ln \gamma_i)_{chem} + (\ln \gamma_i)_{phys} \qquad i = K, E, A$$
(18)

The physical terms of the three constituents are described by eqn. (2) and the chemical terms are given by

$$(\ln \gamma_{\rm K})_{\rm chem} = \ln(x_{\rm K_{\rm I}}/x_{\rm K}) \tag{19}$$

$$(\ln \gamma_{\rm E})_{\rm chem} = \ln(x_{\rm E_1}/x_{\rm E})$$
⁽²⁰⁾

$$(\ln \gamma_A)_{\rm chem} = \ln \left(x_{A_1} / x_{A_1}^0 x_A \right) \tag{21}$$

CALCULATED RESULTS

Values of the vapour pressures of pure alcohols at 25°C were obtained from Kato [2]. We reduced the number of adjustable parameters, assuming that

$$a_{\rm EA} = \beta a_{\rm KA} \qquad a_{\rm AE} = \beta a_{\rm AK} \qquad K_{\rm AK} = K_{\rm AE} \tag{22}$$

In the correlation of vapour-liquid equilibrium data, the program of Prausnitz et al. [7] was modified to provide an optimum set of the parameters minimizing the objective function

$$F = \sum_{i=1}^{N} \left[\frac{\left(P_i - \hat{P}_i\right)^2}{\sigma_P^2} + \frac{\left(T_i - \hat{T}_i\right)^2}{\sigma_T^2} + \frac{\left(x_{1i} - \hat{x}_{1i}\right)^2}{\sigma_x^2} + \frac{\left(y_{1i} - \hat{y}_{1i}\right)^2}{\sigma_y^2} \right]$$
(23)

where a circumflex indicates the calculated value and the standard deviations in the measured values were used as $\sigma_P = 1$ Torr, $\sigma_T = 0.05$ K, $\sigma_x = 0.001$ and $\sigma_y = 0.003$. We did not use experimental values of the equilibrium constant (x_K/x_E) to obtain x_K in the mixtures. An iterative method was used to calculate x_K . First, x_K is set as x_K^0 , then γ_K and γ_E are calculated from eqn. (2). K_T is a product of (x_K^0/x_E^0) and (γ_K^0/γ_E^0) . A new value of x_K is calculated using x_K (new) = $K_T(\gamma_E/\gamma_K)(1-x_A)/\{1+K_T(\gamma_E/\gamma_K)\}$ rearranged from eqn. (5). The next iteration starts until x_K (new) satisfies the criterion $|x_K(\text{new}) - x_K(\text{old})| < 10^{-6}$. These calculations are carried out for each set of the parameters.

Tables 1 and 2 show the association constants for pure alcohols at 25°C [3] and the solvation constants $(K_{AK} = K_{AE})$ for acetylacetone-alcohol mixtures at 25°C. Table 3 gives values of a_{KA} , a_{AK} and β and the root-mean square deviations between the experimental and calculated variables and Tables 4-9 detailed calculated results for each system. Figures 1-3 compare the calculated results and the experimental values, showing that the agreement is good.

TABLE 1

Component	K _{A2}	K _{A3}	K _A	θ	
Methanol	70	120	100	90	
Ethanol	40	110	45	85	
1-Propanol	35	90	40	75	
2-Propanol	35	85	30	70	
2-Butanol	25	60	30	65	
2-Methyl-2-propanol	20	40	30	55	

Association constants for alcohols at 25°C

TABLE 2

Solvation constants for acetylacetone-alcohol at 25°C

Mixture	$K_{\rm AE} \ (=K_{\rm AK})$	
Acetylacetone-methanol	110	
Acetylacetone-ethanol	55	
Acetylacetone-1-propanol	45	
Acetylacetone-2-propanol	35	
Acetylacetone-2-butanol	40	
Acetylacetone-2-methyl-2-propanol	35	

TABLE 3

Calculated results obtained from vapour-liquid equilibrium data reduction for binary mixtures of acetylacetone with alcohols at 25°C

	Number	Parame	ters		Root-n	nean-s	quare dev	viations	Variance
	of data points	а _{ка} (К)	a _{AK} (K)	β	δP (Torr)	δ <i>T</i> (K)	$\frac{\delta x}{(\times 10^3)}$	$\frac{\delta y}{(\times 10^3)}$	of fit *
Acetylacetone- methanol	10	188.91	154.03	1.20	0.54	0.00	0.1	2.8	1.71
ethanol	8	124.54	290.62	1.06	0.98	0.00	0.0	5.1	6.21
Acetylacetone-	10	167 26	274 00	0.91	0.51	0.00	0.0	10.3	15 07
Acetylacetone-	12	107.50	2/4.77	0.01	0.51	0.00	0.0	10.5	15.97
2-propanol	10	97.02	262.97	1.09	0.97	0.00	0.1	3.9	3.82
Acetylacetone- 2-butanol	9 ^b	59.81	388.06	0.94	0.72	0.01	0.5	12.5	27.23
Acetylacetone-									
2-propanol	12	181.70	11 4.9 5	1.28	0.62	0.01	0.6	3.9	3.26

^a Variance of fit = (sum of squared, weighted residuals)/(number of data points - number of parameters). ^b We rejected one experimental point which deviated greatly.

Detailed c	alculated r	esults for	the vapo	our-liquid	equilibria of	the acety	/lacetone(1)-	methanol(2) system a	at 25°C		
No.	Ρ	8P ª	δT	x ₁	бx	<i>y</i> 1	δy	۲ĸ	۲ _E	72	$100 y_{\rm K} / y_1^{\rm b}$	$100x_{\rm K}/x_1^{\circ}$
	(Torr)	(Torr)	(K)						1	ļ	(%)	(%)
1	114.80	-0.10	0.00	0.139	-0.0001	0.035	0.0069	2.1783	2.5133	1.0313	7.26	22.50
2	107.46	0.76	0.00	0.288	0.0000	0.050	0.0020	1.7272	1.9056	1.1342	7.26	21.73
e	101.28	-0.06	0.00	0.388	0.0000	0.059	0.0005	1.5182	1.6266	1.2395	7.26	21.24
4	91.76	0.39	0.00	0.544	0.0000	0.077	0.0021	1.2960	1.3276	1.4736	7.26	20.50
5	91.87	1.25	0.00	0.554	0.0001	0.076	-0.001	1.2853	1.3129	1.4921	7.26	20.45
6	83.33	0.02	0.00	0.638	-0.0001	0.089	0.0011	1.2084	1.2052	1.6689	7.26	20.07
7	76.96	-0.36	0.00	0.694	-0.0001	0.099	0.0005	1.1698	1.1484	1.8114	7.26	19.81
80	58.03	- 0.08	0.00	0.824	- 0.0001	0.142	-0.0021	1.1155	1.0555	2.2474	7.26	19.23
6	41.52	0.64	0.00	0.903	0.0002	0.215	-0.0033	1.1053	1.0226	2.6132	7.26	18.89
10	34.09	-0.21	0.00	0.927	-0.0001	0.263	-0.0028	1.1056	1.0158	2.7473	7.26	18.78
P MAA		0.39	0.00		0.0001		0.0021					
^a 8, measu ^b Keto for ^c Keto for ^d AAM, a)	rred value - m in the v m in the li ssolute arit	- calculate apour pha iquid phase thmetic me	d one. ise. e. ean devia	ation.			5					

TABLE 4 , ÷ ۴

Detailed c	alculated r	esults for t	the vapor	ur-liquid	equilibria (of the ace	tylacetone(1)	-ethanol(2) system at	25°C			1
No.	P (Torr)	δP ^a (Torr)	δT	x1	δx	۲ı	δy	۲ĸ	γ _E	72	$100 y_{\rm K}/y_{\rm 1}^{\rm b}$	$100x_{\rm K}/x_1^{\rm c}$	I
1	57.57	1.15	0.00	0.064	0.0000	0.037	0.0011	3.1699	3.3613	0.9946	7.26	21.07	
2	54.84	1.50	0.00	0.190	0.0000	0.079	0.0014	2.3203	2.3850	1.0365	7.26	20.55	
e	53.67	1.53	0.00	0.251	0.0000	0.093	-0.0018	2.0458	2.0741	1.0784	7.26	20.33	
4	50.21	0.98	0.00	0.418	0.0000	0.131	0.0071	1.5572	1.5262	1.2683	7.26	19.79	
5	48.30	0.46	0.00	0.491	0.0000	0.138	0.0026	1.4230	1.3763	1.3907	7.26	19.58	
9	42.14	-0.66	0.00	0.663	0.0000	0.182	0.0104	1.2223	1.1496	1.8005	7.26	19.14	
7	32.99	0.10	0.00	0.823	0.0000	0.256	0.0033	1.1347	1.0434	2.3769	7.26	18.79	
~	23.55	0.44	0.00	0.914	0.0000	0.384	- 0.0052	1.1161	1.0145	2.8090	7.26	18.62	
P MAA		0.85	0.00		0.0000		0.0041						
^a ô, measi ^b Keto fo ^c Keto foi ^d AAM, a	rred value - m in the v m in the li bsolute arit	- calculate apour pha quid phase hmetic me	d value. se. e. zan devia	tion.									1

TABLE 5

225

DCIAIL	au calculate		UT LITE VA	npur-nqu	uannha ni	a oi ine a	cerylaceroned	1)–1-propa	nol(2) syste	רב 15 mi			
No.	Р	8P *	δΤ	x ¹	δx	۲ ^ر	ôy	Υĸ	۲ _E	72	$100 y_{\rm K} / y_1^{\rm b}$	$100x_{\rm K}/x_1^{\circ}$	
	(Тот)	(Tor)		I						ì	(%)	(%)	
1	21.39	0.25	0.00	0.083	0.0000	0.119	0.0187	3.2508	2.5704	1.0032	7.26	16.60	
7	21.42	0.07	0.00	0.191	0.0000	0.188	0.0064	2.5446	2.0484	1.0450	7.26	16.85	
÷	21.54	0.20	0.00	0.264	0.0000	0.218	-0.0015	2.2036	1.7942	1.0951	7.26	17.01	
4	21.45	0.13	0.00	0.291	0.0000	0.229	- 0.0024	2.0980	1.7152	1.1182	7.26	17.06	
S	21.32	0.01	0.00	0.302	0.0000	0.213	-0.0230	2.0578	1.6851	1.1284	7.26	17.09	
9	20.48	-0.56	0.00	0.430	0.0000	0.276	-0.0069	1.6844	1.4050	1.2805	7.26	17.35	
7	21.22	0.45	0.00	0.501	0.0000	0.306	-0.0009	1.5361	1.2939	1.3954	7.26	17.49	
80	20.07	- 0.46	0.00	0.546	0.0000	0.339	0.0161	1.4585	1.2360	1.4813	7.26	17.58	
6	19.23	-0.54	0.00	0.643	0.0000	0.359	-0.0039	1.3260	1.1383	1.7067	7.26	17.77	
10	16.90	-0.97	0.00	0.773	0.0000	0.446	0.0005	1.2069	1.0539	2.1115	7.26	18.02	
11	14.18	- 0.84	0.00	0.881	0.0000	0.577	-0.0041	1.1476	1.0164	2.5573	7.26	18.23	
12	11.28	- 0.61	0.00	0.959	0.0000	0.788	- 0.0008	1.1235	1.0053	2.9638	7.26	18.38	
, MAA	-	0.42	0.00		0.0000		0.0071						
^a 8, m ^b ^b Keto ^c Keto AAN	easured val form in th form in th f, absolute	ue – calcula le vapour p le liquid ph arithmetic	ated valu bhase. 1ase. mean de	le. viation.									

Detailed calculated results for the vapour-liquid equilibria of the acetylacetone (1)-1.

TABLE 6

226

Detailed	calculated	results for	the vapor	ır-liquid (equilibria of	the acetyl	acetone(1)-2	2-propanol	(2) system	at 25°C			
No.	Р	8P ª	8T	x1	ôx	۲	δy	۲ĸ	۲e	72	$100 y_{\rm K}/y_1^{\rm b}$	$100x_{\rm K}/x_1^{\rm c}$	1
	(Torr)	(Torr)									(%)	(%)	
	42.35	0.42	0.00	0.052	-0.0001	0.043	0.0072	2.8290	3.0717	0.9947	7.26	21.46	
2	42.60	1.71	0.00	0.114	-0.0001	0.072	0.0036	2.4464	2.6105	1.0027	7.26	21.17	
e	40.16	1.20	0.00	0.250	0.0000	0.120	0.0026	1.8763	1.9333	1.0691	7.26	20.59	
4	39.92	1.53	0.00	0.296	0.0000	0.126	- 0.0038	1.7414	1.7748	1.1066	7.26	20.41	
5	37.74	1.02	0.00	0.437	0.0000	0.160	-0.0021	1.4442	1.4270	1.2747	7.26	19.92	
9	34.80	- 0.08	0.00	0.565	0.0000	0.194	0.0024	1.2791	1.2326	1.5117	7.26	19.52	
7	31.94	- 0.19	0.00	0.684	0.0000	0.230	0.0008	0.1848	1.1178	1.8281	7.26	19.19	
•••	25.92	- 0.79	- 0.01	0.813	-0.0001	0.307	-0.0002	1.1293	1.0436	2.3089	7.26	18.87	
6	23.01	-0.77	0.00	0.859	-0.0001	0.358	-0.0014	1.1193	1.0272	2.5216	7.26	18.76	
10	17.32	-0.51	0.00	0.930	0.0001	0.504	- 0.0075	1.1128	1.0108	2.8987	7.26	18.61	
P MAA		0.82	0.00		0.0001		0.0032						
^a 8. meas	sured value	s - calculate	ed value.										

TABLE 7

o, inteasured value – calculated value. b Keto form in the vapour phase. c Keto form in the liquid phase. d AAM, absolute arithmetic mean deviation.

Detailed	calculated	results io	r une vapou	ur-nquia	equinoria or	une acety	lacetone(1)-	z-putanol(z) system i	ר _ב		
No.	Ρ	8P ª	δΤ	x1	δx	y1	δy	۲ĸ	$\gamma_{\rm E}$	γ2	$100y_{\rm K}/y_{\rm 1}^{\rm b}$	$100x_{\rm K}/x_1^{\rm c}$
	(Torr)	(Torr)	(K)	I		I		1	I	I	(%)	(%)
1	18.48	0.10	- 0.01	0.046	-0.0009	0.100	0.0155	3.7384	3.4223	0.9973	7.26	18.72
2	18.99	- 0.09	- 0.01	0.161	-0.0001	0.203	0.0055	2.6425	2.4122	1.0313	7.26	18.68
Э	17.97	- 0.99	0.01	0.390	0.0000	0.297	-0.0020	1.6512	1.4991	1.2312	7.26	18.60
4	17.51	-1.07	0.00	0.491	0.0000	0.342	0.0068	1.4421	1.3065	1.3710	7.26	18.57
5	17.37	- 1.06	-0.02	0.518	-0.0002	0.366	0.0200	1.3990	1.2669	1.4136	7.26	18.56
9	16.24	- 1.01	0.00	0.661	0.0000	0.420	0.0043	1.2369	1.1173	1.6803	7.26	18.52
7	15.04	-0.58	- 0.01	0.776	-0.0001	0.508	0.0012	1.1638	1.0495	1.9433	7.26	18.50
8	14.01	0.03	-0.02	0.856	-0.0008	0.623	0.0136	1.1343	1.0219	2.1532	7.26	18.49
6	12.24	0.17	0.01	0.930	0.0008	0.732	-0.0219	1.1203	1.0085	2.3697	7.26	18.47
P WVY		0.57	0.01		0.0003		0.0101					
^a 8, meas ^b Keto fc ^c Keto fo ^d AAM, a	urred value orm in the orm in the absolute au	e – calculat vapour ph liquid pha rithmetic n	ted value. 1ase. 1se. nean devia	tion.								

0 26 to 1 ----20100 ma(1) 2 hints o o trano our liquid samilibria of the realise for the Detailed calculated

TABLE 8

P δP^{-a} δT χ_1 δx γ_1 δy γ_k γ_E γ_2 $100y_k/y_1^{-b}$ $100x_k/x_1^{-b}$ 40.94 0.22 0.00 0.117 -0.0001 0.065 0.0007 2.0196 2.4268 1.00 y_k/y_1^{-b} (\Re) (\Im) (\Im) (\Im) </th <th></th> <th></th> <th>criment m</th> <th></th> <th>mhu mod</th> <th>nuoninko n</th> <th></th> <th>(+)</th> <th></th> <th>- have a</th> <th></th> <th></th> <th></th> <th></th>			criment m		mhu mod	nuoninko n		(+)		- have a				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ρ	8P a	δ <i>T</i>	r,	δx	y ₁	δy	$\gamma_{\rm K}$	$\gamma_{\rm E}$	γ_2	$100 y_{\rm K} / y_{\rm 1}^{\rm b}$	$100x_{\rm K}/x_1^{\rm c}$	
40.940.220.000.1180.00000.0650.00072.01962.42681.03057.2623.2239.56 -0.56 0.000.177 -0.0001 0.0930.00431.85372.18601.06007.2622.8939.790.0020.010.2100.00010.143 -0.0035 1.77262.06871.08017.2622.7037.25 -0.56 0.010.3650.00010.143 -0.0038 1.47061.63381.21187.2621.8535.06 -0.70 0.010.3840.00010.174 -0.0032 1.31201.40341.35827.2621.8535.06 -0.70 0.010.530 -0.0001 0.174 -0.0032 1.26401.33211.47277.2621.8533.24 -1.53 -0.01 0.530 -0.0002 0.09251.26401.33211.42727.2620.9637.21 -0.74 -0.01 0.530 -0.0002 0.20251.20441.24091.54877.2620.9627.32 -0.44 -0.01 0.750 -0.0002 0.2337 -0.0013 1.12201.10031.89717.2619.8027.32 -0.44 -0.01 0.750 -0.0022 0.2337 -0.0013 1.12201.10031.89717.2619.8027.31 0.24 0.02 0.023 0.0012 0.2337 -0.0044 1.10212.09457.2619.4617.06<		(Тог)	(Torr)	(K)								(%)	(%)	
39.56 -0.56 0.00 0.177 -0.0001 0.093 0.0043 1.8537 2.1860 1.0600 7.26 22.89 23.70 37.25 -0.56 0.01 0.2365 0.0001 0.143 -0.0038 1.7726 2.0687 1.0801 7.26 22.70 22.70 37.25 -0.56 0.01 0.365 0.0001 0.143 -0.0038 1.4706 1.6338 1.2118 7.26 21.85 21.213 33.24 -1.53 -0.01 0.5300 -0.00022 0.0025 1.2640 1.3321 1.4272 7.26 20.96 21.213 32.27 -0.74 -0.01 0.5300 -0.00022 0.194 0.00025 1.2640 1.3321 1.4272 7.26 20.96 20.76 20.76 20.76 21.21 21.21 21.21 21.21 21.21 21.21 21.26 21.26 21.26 21.26 21.26 21.26 21.26	1	40.94	0.22	0.00	0.118	0.0000	0.065	0.0007	2.0196	2.4268	1.0305	7.26	23.22	
39.79 0.02 0.01 0.210 0.0002 0.097 -0.0035 1.7726 2.0687 1.0801 7.26 22.70 37.25 -0.56 0.01 0.365 0.0001 0.143 -0.0038 1.4706 1.6338 1.2118 7.26 21.85 35.06 -0.70 0.01 0.484 0.0001 0.174 -0.0042 1.3120 1.4034 1.3582 7.26 21.85 33.24 -1.53 -0.01 0.530 -0.0002 0.194 0.0025 1.2640 1.3321 1.4272 7.26 20.96 32.27 -0.74 -0.01 0.530 -0.0002 0.283 -0.0025 1.2640 1.3321 1.4272 7.26 20.96 27.32 -0.44 -0.01 0.560 0.0001 0.283 -0.0013 1.1220 1.1437 7.26 19.80 27.32 0.249 0.023 0.20013 0.1220 1.10612 1.2409 1.5487 7.26 <t< td=""><td></td><td>39.56</td><td>-0.56</td><td>0.00</td><td>0.177</td><td>-0.0001</td><td>0.093</td><td>0.0043</td><td>1.8537</td><td>2.1860</td><td>1.0600</td><td>7.26</td><td>22.89</td><td></td></t<>		39.56	-0.56	0.00	0.177	-0.0001	0.093	0.0043	1.8537	2.1860	1.0600	7.26	22.89	
37.25 -0.56 0.01 0.365 0.0001 0.143 -0.0038 1.4706 1.6338 1.2118 7.26 21.85 35.06 -0.70 0.01 0.484 0.0001 0.174 -0.0042 1.3120 1.4034 1.3582 7.26 21.21 33.24 -1.53 -0.01 0.530 -0.0002 0.194 0.0025 1.2640 1.3321 1.4272 7.26 20.96 32.27 -0.75 0.01 0.500 0.0001 0.208 -0.0025 1.2044 1.2409 1.5487 7.26 20.59 27.32 -0.44 -0.01 0.750 -0.0002 0.283 -0.0013 1.1220 1.1003 1.8971 7.26 19.80 27.32 -0.44 -0.01 0.750 -0.0002 0.283 -0.0013 1.1220 1.1003 1.8971 7.26 19.80 27.31 0.244 0.02 0.931 0.0002 0.2337 -0.0013 1.1051 1.0612 2.0945 7.26 19.46 17.06 0.29 0.020 0.949 -0.00012 0.539 -0.0046 1.1005 1.0612 2.0945 7.26 19.46 14.96 -0.112 0.0012 0.539 -0.0004 1.1034 1.0018 2.7123 7.26 18.74 14.96 -0.01 -0.011 0.963 -0.0004 1.1034 1.0018 2.7123 7.26 18.74 13.61 -0.01 -0.011 0.96		39.79	0.02	0.01	0.210	0.0002	0.097	-0.0035	1.7726	2.0687	1.0801	7.26	22.70	
35.06 -0.70 0.01 0.484 0.0001 0.174 -0.0042 1.3120 1.4034 1.3582 7.26 21.21 33.24 -1.53 -0.01 0.530 -0.0002 0.194 0.0025 1.2640 1.3321 1.4272 7.26 20.96 32.27 -0.75 0.01 0.600 0.0001 0.208 -0.0022 1.2044 1.2409 1.5487 7.26 20.96 27.32 -0.44 -0.01 0.750 -0.00022 0.283 -0.0013 1.1220 1.1003 1.8971 7.26 19.80 27.32 0.244 -0.01 0.750 -0.0002 0.2337 -0.0013 1.1220 1.1003 1.8971 7.26 19.80 1706 0.29 0.0023 0.2337 -0.0072 1.1051 1.0612 2.0945 7.26 19.46 1706 0.020 0.9012 0.2339 -0.0074 1.1063 1.0616 7.26 19.46 13.61 -0.01		37.25	-0.56	0.01	0.365	0.0001	0.143	- 0.0038	1.4706	1.6338	1.2118	7.26	21.85	
33.24 -1.53 -0.01 0.530 -0.0002 0.194 0.0025 1.2640 1.3321 1.4272 7.26 20.96 32.27 -0.75 0.01 0.600 0.0001 0.208 -0.0052 1.2044 1.2409 1.5487 7.26 20.59 27.32 -0.44 -0.01 0.750 -0.0002 0.283 -0.0013 1.1220 1.1003 1.8971 7.26 20.59 25.27 0.54 0.02 0.813 0.0002 0.283 -0.0013 1.1220 1.1003 1.8971 7.26 19.46 17.06 0.29 0.0012 0.2337 -0.0072 1.1005 1.0612 2.0945 7.26 19.46 17.06 0.29 0.0012 0.5339 -0.0004 1.1005 1.0612 2.0945 7.26 18.84 14.96 -0.12 0.0012 0.5339 -0.0004 1.1034 1.0108 2.7123 7.26 18.74 13.61 -0.01 0.0015 <td< td=""><td></td><td>35.06</td><td>-0.70</td><td>0.01</td><td>0.484</td><td>0.0001</td><td>0.174</td><td>- 0.0042</td><td>1.3120</td><td>1.4034</td><td>1.3582</td><td>7.26</td><td>21.21</td><td></td></td<>		35.06	-0.70	0.01	0.484	0.0001	0.174	- 0.0042	1.3120	1.4034	1.3582	7.26	21.21	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		33.24	-1.53	- 0.01	0.530	-0.0002	0.194	0.0025	1.2640	1.3321	1.4272	7.26	20.96	
27.32 -0.44 -0.01 0.750 -0.0002 0.283 -0.0013 1.1220 1.1003 1.8971 7.26 19.80 25.27 0.54 0.02 0.813 0.0005 0.327 -0.0072 1.1051 1.0612 2.0945 7.26 19.46 17.06 0.29 0.02 0.931 0.0012 0.539 -0.0046 1.1005 1.0150 2.6006 7.26 18.84 14.96 -0.12 0.00 0.949 -0.0001 0.616 -0.0004 1.1034 1.0108 2.7123 7.26 18.74 13.61 -0.01 0.963 -0.0015 0.695 0.0024 1.1064 1.0081 2.8171 7.26 18.66 a 0.48 0.01 0.9004 0.0033 0.0033 1.1064 1.0081 2.8171 7.26 18.66		32.27	-0.75	0.01	0.600	0.0001	0.208	-0.0052	1.2044	1.2409	1.5487	7.26	20.59	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		27.32	-0.44	- 0.01	0.750	- 0.0002	0.283	-0.0013	1.1220	1.1003	1.8971	7.26	19.80	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		25.27	0.54	0.02	0.813	0.0005	0.327	-0.0072	1.1051	1.0612	2.0945	7.26	19.46	
14.96 -0.12 0.00 0.949 -0.001 0.616 -0.0004 1.1034 1.0108 2.7123 7.26 18.74 13.61 -0.01 0.963 -0.0015 0.695 0.0024 1.1064 1.0081 2.8171 7.26 18.66 a 0.48 0.01 0.0004 0.0033 0.0033 0.0033		17.06	0.29	0.02	0.931	0.0012	0.539	-0.0046	1.1005	1.0150	2.6006	7.26	18.84	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14.96	- 0.12	00.0	0.949	-0.001	0.616	-0.0004	1.1034	1.0108	2.7123	7.26	18.74	
d 0.48 0.01 0.0004 0.0033		13.61	-0.01	- 0.01	0.963	-0.0015	0.695	0.0024	1.1064	1.0081	2.8171	7.26	18.66	
	P		0.48	0.01		0.0004		0.0033						

Detailed calculated results for the vapour-liquid equilibria of the acetylacetone(1)-2-methyl-2-propanol(2) system at 25°C

TABLE 9

^a ô, measured value – calculated value. ^b Keto form in the vapour phase. ^c Keto form in the liquid phase. ^d AAM, absolute arithmetic mean deviation.

Fig. 1. Vapour-liquid equilibria for pseudo-ternary systems at 25 °C. Experimental data of Kato [2]: 1, acetylacetone-methanol (\circ); 2, acetylacetone-ethanol (\bullet). Calculated (-----, -----).

We may conclude that the present model is useful in the correlation of vapour-liquid equilibria for solutions containing the tautomers of acetylacetone and an alcohol.

Fig. 3. Vapour-liquid equilibria for pseudo-ternary systems at 25 °C. Experimental data of Kato [2]: 1, acetylacetone-2-methyl-2-propanol (\circ); 2, acetylacetone-2-butanol (\bullet). Calculated (-----, -----).

Mole fraction of acetylacetone

Fig. 2. Vapour-liquid equilibria for pseudo-ternary systems at 25°C. Experimental data of Kato [2]: 1, acetylacetone-2-propanol (\circ); 2, acetylacetone-1-propanol (\bullet). Calculated (-----, -----).

Mole fraction of acetylacetone

LIST OF SYMBOLS

a _{ii}	NRTL interaction parameter for $i-j$ pair
$A_{\rm E}^{0}, A_{\rm K}^{0}$	coefficients of vapour pressure equation defined by eqn. (6)
$B_{\rm E}^{\bar{0}}, B_{\rm K}^{\bar{0}}$	coefficients of vapour pressure equation defined by eqn. (6)
F	objective function as defined by eqn. (23)
G_{ii}	coefficient as defined by $exp(-\alpha_{i},\tau_{i})$
<i>K</i> ,	equilibrium constant for open-chain polymer formation of
	alcohol. $i > 3$
К.	equilibrium constant for dimer formation of alcohol
K_{1}	equilibrium constant for open-chain trimer of alcohol
K^{A_3}	solvation constants between the end and keto forms of
MAE, MAK	acetylacetone and open-chain polymers of alcohol
K	acceptacetone and open-chain polymers of alcohol
л _{су}	of algobal as defined by $A/i \to A$
V	of alcohol as defined by θ/l , $l > 4$
Δ _T	thermodynamic equinorium constant
	total pressure
P_i°	vapour pressure of pure chemical species i
R	universal gas constant
Т	absolute temperature
x_i	liquid-phase mole fraction of chemical species i
y_i	vapour-phase mole fraction of chemical species i
Ζ	coefficient as defined by $K_A x_{A_1}$
Greek letters	
α,,	nonrandomness parameter for $i-j$ pair
ß	constant
Υ.	activity coefficient of chemical species <i>i</i>
$\sigma_{P}, \sigma_{T}, \sigma_{v}, \sigma_{v}$	standard deviations in pressure, temperature, liquid-phase
- F, I, X, Y	mole fraction and vapour-phase mole fraction
τ	coefficient as defined by a_{ii}/T
-ij	
Subscripts	
A, E, K	alcohol, enol and keto forms of acetylacetone
A_1, E_1, K_1	monomers of alcohol and enol and keto forms of acetylace-
	tone
$A_i E, A_i K$	chemical complexes composed of open-chain polymer of
	alcohol imer and one of the tautomers of acetylacetone
chem	chemical
i, j, k, l	chemical species
phys	physical
Superscript	
0	pure liquid state
	have where areas

REFERENCES

- 1 I. Nagata and S. Miyata, Thermochim. Acta, 177 (1991) 129.
- 2 M. Kato, Ind. Eng. Chem. Fundam., 19 (1980) 253.
- 3 I. Nagata and K. Tamura, Thermochim. Acta, 57 (1982) 331; 77 (1984) 281; 87 (1985) 129; 121 (1987) 447.
- 4 H. Renon and J.M. Prausnitz, AIChE J., 14 (1968) 135.
- 5 M. Inoue, Y. Arai, S. Saito and N. Suzuki, J. Chem. Eng. Data, 26 (1981) 287.
- 6 I. Prigogine and R. Defay, Chemical Thermodynamics, Longmans Green, London, 1954, Chapter 26.
- 7 J.M. Prausnitz, T.F. Anderson, E.A. Grens, C.A. Eckert, R. Hsieh and J.P. O'Connell, Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria, Prentice-Hall, Englewood Cliffs, NJ, 1980.