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Abstract 

The kinetics of solid pyrolysis is widely studied for providing kinetic models for engineer- 
ing purposes. A differential method for model discrimination which separates the influences 
of temperature and conversion is presented. This simple method is used to analyse, as an 
example, the kinetics of sodium bicarbonate decomposition. The experimental data of 
temperature- and conversion-influenced reaction rates are simulated with great accuracy. 

INTRODUCl-ION 

The kinetic analysis of‘ thermogravimetric (TG) data is widely used for 
studying processes such as oil shale pyrolysis [1,2], conversion of heavy 
petroleum residuum to lighter products [3], preparation of catalysts, molecu- 
lar sieves [4] or highly reactive solids [5], and pyrolysis of biomass [6]. 

A TGA apparatus allows use of small sample masses and so the effect of 
heat and mass transfer processes are usually eliminated. Other advantages of 
the TGA over tubular reactors are that the weight and the rate of thermal 
decomposition can be obtained at any instant [5]. 

In solid thermal decompositions, it is very difficult to establish an 
isothermal conditions before a substantial degree of the reaction has oc- 
curred [4]. That is why experiments with linear temperature change are 
preferred [7]. Three methods are usually applied to the analysis of noniso- 
thermal data: differential [8], difference-differential [9] and integral [lo] 
methods. The integral methods are the most widely used but they have two 
significant limitations: the integration of the temperature integral [ll] and 
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the determination of the kinetic model [12]. The approximation of the 
temperature integral has been widely treated [11,13,14]; however, it is 
difficult to correlate experimental TG data using the approximate integral 
equations because these equations establish a complex relationship between 
the temperature and the activation energy. The exact solution [15] of the 
temperature integral also has this disadvantage. Obtaining the kinetic model 
is an uphill task for all three methods [4,12]. 

The aim of this paper is to present a differential method which avoids the 
mentioned limitations. The approximation of the temperature integral is 
avoided by using reaction rates. The temperature and conversion influences 
can be separated taking values of reaction rate and conversion at a given 
temperature from experiments carried out at different heating rates. The 
method is used to analyse the kinetics of sodium bicarbonate decomposition. 
The results agree with those published. 

EXPERIMENTAL 

Sodium bicarbonate (Aldrich) ACS reagent was used. The decomposition 
behaviour of samples, weighing 10 f 0.25 mg with a random distribution of 
solid in the sample pan, was observed in a DuPont model 951 Thermogravi- 
metric Analyser (TGA) connected to a nitrogen flow control system which 
maintained a flow rate of 2 cm3 s-l. This gives an approximate linear 
velocity of 0.71 cm s-r in the reaction chamber. The sample temperature 
was measured by a chromel-alumel thermocouple placed only a few milli- 
metres from the sample. The weight variation of the sample and the 
derivative of this curve (TGD) were recorded as a function of the sample 
temperature. 

The decomposition experiments were carried out at five different heating 
rates (0.6, 1.1, 2.3, 5.7 and 11.0 K mm’). These heating rates were chosen 
to obtain r-a-T data in a wide temperature range and they are low enough 
to avoid thermal gradients in the sample. 

RESULTS AND DISCUSSION 

Figure 1 shows experimental r-T and a-T data for each of the five runs 
carried out at distinct heating rates. Sets of experimental r-a values at any 
given constant temperature can be easily obtained from this figure by 
intersecting both the a-T curve at constant /3 and its corresponding r-T 
curve with a vertical line drawn at constant T. The ordinates of the 
intersections are the (Y and r values respectively. Temperatures of 410, 415, 
420, 425, 430 and 435 K were chosen to obtain at least four pairs of r-a 
values at each temperature. 
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Experimental and calculated data. 

The general rate equation in solid decomposition is 

la3 0arhh-l) 

0 .6 

a 1.1 

x 2.3 

+ 6.7 

v 11.0 

- c*1ou1d.d 

r= $f =Kf(a) 0) 
where K is the rate constant given by the Arrhenius equation 

K= K, exp( -E/RT) (2) 

The f(a) function depends on the kinetic model. Table 1 shows a list of 
typical models reported in the TGA literature and their corresponding f(a) 
functions. The Rl model is clearly discarded in the present case because at 
constant temperature it predicts constant decomposition rates and Fig. 1 
shows that decomposition rates depend on conversion. Table 2 shows the 
parameters of the regression lines obtained by fitting r vs. f(a) for different 
decomposition models at each chosen temperature. We used the F test in 
order to discriminate between decomposition models. F_, is obtained by 
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TABLE 1 

Conversion functions of different kinetic models 

Rate mechanism Symbol f(o) g(a) 

Nucleation and nuclei growth 
(a) Random nucleation Fl l-a! - ln(1 - a) 
(b) Two-dimensional nuclei growth F2 2(1- a) - [ln(l - ff)]“2 

[ - ln(1 - 01)]‘/~ 
(c) Three-dimensional nuclei growth F3 3(1- ff) - [In(l - 01)]‘/~ 

[ -ln(l- a)lzL3 
Diffusion 

(a) One-dimensional transport Dl (Y-1 a2/2 
(b) Two-dimensional transport 

(cylindrical geometry) D2 [ - In(1 - a)lT2 (l-a)ln(l-f_u)+a 
(c) Three-dimensional diffusion 

(spherical geometry) D3 [(l - a)-“3 -I] (3/2)[1- 2a,‘3 
- (1 - a)2’3] 

Phase boundary reaction 
(a) One-dimensional (zero order) Rl Constant a 
(b) Two-dimensional 

(cylindrical geometry) R2 (1 - ,)“2 2[1- (1 - ff)‘/2] 
(c) Thr~-dimensiona 

(spherical geometry) R3 (1 - a)2’3 3[1- (1 - a)‘/3] 

dividing the variance of the estimated decomposition rates about the mean 
of experimental values by the variance of experimental reaction rates about 
the regression lines. &., are the tabulated values at a probability level of 
99%. 

Only the Fl model allows the data to fit a straight line at any temperature 
( FC,, is larger than Ftab in any case). Using the R2 or R3 models the data fit 
straight lines at four or five temperatures respectively. Other models can 
clearly be discarded. The Fl model generates the intercepts nearest to zero 
in accordance with eqn. (1). The choice of the Fl model is clear by 
considering both the F test and the intercept values. In a recent paper, Hu et 
al. [5] also chose the Fl model to describe the kinetic behaviour of such a 
reaction. 

The slopes obtained in the regression analysis are the rate constants K 
which are related to temperature in eqn. (2). We obtained K. = 2.16 X 10” 

min-’ and E = 98.81 kJ mol-‘. The E value is very close to that obtained 
by Hu et al. [5] with the difference being less than 3%. The values of K, are 
not compared since the sample masses were different. Figure 1 shows the 
calculated r-T and a-T data using the obtained values of the kinetic 
parameters. To obtain the a--T curves, eqns. (l), (2) and (3) are taken into 
account 

dT 
P=,, 
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Combining these equation and integrating results in 

Simpson’s rule (AT = 0.25 
eqn. (4). Once the a-T data 
calculate the T-_(y curves. 

This very simple method 

K) was used to calculate the righthand side of 
are obtained for a given & eqn. (3) is used to 

also satisfactorily analyses kinetic data from 
calcium carbonate decomposition, the model being R2 and E = 209 kJ 
mol-‘. This value is very similar to that proposed by Borgwardt [16]. Other 
kinetics such as cadmium carbonate decomposition (model F3, E = 132 kJ 
mol-‘) were also analysed with this method. In any case, discrimination 
between models is easy and the calculated data are very close to those of the 
experiment. 
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APPENDIX: NOMENCLATURE 

L) 

activation energy (kJ mol-‘) 
conversion influence in the decomposition 

g(a) - / 

a d 
(Y 

0 f&4 
K rate constant (rnin-‘) 

KO pre-exponential factor (min-‘) 

; 
decomposition rate (min-‘) 
gas constant (kJ mol-’ K-‘) 

t time (min) 
T temperature (K) 

T, initial temperature (K) 

Greek letters 

fractional conversion 
heating rate (K min-‘) 

rate 


