Quantitative correlations of activation parameters and procedural factors—dependence on reaction type

Suresh Mathew^a, C.G.R. Nair^a and K.N. Ninan^b

^a Department of Chemistry, University of Kerala, Trivandrum 695 034 (India) ^b Propellants and Special Chemicals Group, Vikram Sarabhai Space Centre, Trivandrum 695 022 (India)

(Received 7 November 1990)

Abstract

The dependence of the correlation of kinetic parameters (energy of activation and pre-exponential factor) and procedural factors (sample mass and heating rate) on the type of reaction in non-isothermal thermogravimetry is established here for the first time. The effect of heating rate and sample mass on the stages of decomposition of diaquabis(ethylene-diamine)copper(II) oxalate

$$[\operatorname{Cu}(\operatorname{en})_2(\operatorname{H}_2\operatorname{O})_2]\operatorname{C}_2\operatorname{O}_4 \xrightarrow{-\operatorname{en}} [\operatorname{Cu}(\operatorname{en})_2]\operatorname{C}_2\operatorname{O}_4 \xrightarrow{-\operatorname{en}} \operatorname{Cu}(\operatorname{en})\operatorname{C}_2\operatorname{O}_4 \xrightarrow{-\operatorname{en}} \operatorname{Cu}(\operatorname{en})\operatorname{C}_2\operatorname{O}_4 \xrightarrow{-\operatorname{en}} \operatorname{Cu}(\operatorname{en})\operatorname{C}_2\operatorname{O}_4 \xrightarrow{-\operatorname{CO}_2 - \operatorname{CO}_2} \operatorname{Cu}(\operatorname{en})\operatorname{C}_2\operatorname{Cu}(\operatorname{en})\operatorname{Cu}(\operatorname{en})\operatorname{C}_2\operatorname{Cu}(\operatorname{en})\operatorname{C}_2\operatorname{Cu}(\operatorname{en})\operatorname{Cu}(\operatorname{en})\operatorname{C}_2\operatorname{Cu}(\operatorname{en})\operatorname{Cu}(\operatorname{cu}(\operatorname{en})\operatorname{Cu}(\operatorname{en})\operatorname{Cu}(\operatorname{en})\operatorname{Cu}(\operatorname{en})\operatorname{Cu}(\operatorname{cu}))\operatorname{Cu}(\operatorname{cu}(\operatorname{en})\operatorname{Cu}(\operatorname{cu}))\operatorname{Cu}(\operatorname{cu}(\operatorname{en}))\operatorname{Cu}(\operatorname{cu})}\operatorname{Cu}(\operatorname{cu}(\operatorname{en}))\operatorname{Cu}(\operatorname{cu}))$$
{Cu}(\operatorname{cu}(\operatorname{cu})){Cu}(\operatorname{cu}(\operatorname{cu})){Cu}(\operatorname{cu}(\operatorname{cu})){Cu}(\operatorname{cu}(\operatorname{cu})){Cu}(\operatorname{cu})){Cu}(\operatorname{cu}(\operatorname{cu})){Cu}(\operatorname{cu}(\operatorname{cu})){Cu}(\operatorname{cu})){Cu}(\operatorname{cu}(\operatorname{cu})){Cu}(\operatorname{cu}(\operatorname{cu})){Cu}(\operatorname{cu}))

has been studied non-isothermally. The kinetic parameters, calculated using both the mechanistic and non-mechanistic equations, show a systematic decrease with increase in either heating rate or sample mass for the dehydration and deamination reactions. For the decomposition reaction, the kinetic parameters are not appreciably affected by procedural factors. Mathematical correlations of high reliability are established between kinetic parameters and heating rate/sample mass using both the mechanistic and non-mechanistic equations for the dehydration and deamination reactions. Thus it has been found that the type of reaction is decisive in the correlation of kinetic parameters with procedural factors. The quantification follows a rectangular hyperbolic equation for the dehydration and a parabolic one for the deamination. No quantitative correlations were possible for the final decomposition of the oxalate to oxide.

For all three reaction types, the rate-controlling process is random nucleation with the formation of one nucleus on each particle. It is observed that the mechanism of these reactions is not affected by the variations in sample mass and heating rate, or by the reaction type.

INTRODUCTION

Results from TG curves are known to be affected by a number of experimental variables such as heating rate, sample mass, particle size, packing, atmosphere etc. [1-3]. Although the dependence of E and A on the sample mass and heating rate is well known, only comparatively recently

have attempts been made to study the dependence quantitatively [4-12]. However, no effort seems to have been made so far to explore the possible relation between the type of reaction and the correlation of kinetic parameters with procedural factors.

In this paper we report the results of our attempts to evolve the mathematical correlations between the procedural factors and kinetic parameters for three reaction types, namely the successive dehydration, deamination and final decomposition reactions of diaquabis(ethylenediamine)copper(II) oxalate. The evaluation of kinetic parameters using mechanistic and nonmechanistic equations from non-isothermal TG curves is also discussed.

In view of the presence of ethylenediamine (en), one of the simplest chelating amines, and also the incorporation of two water molecules in the coordination sphere, $[Cu(en)_2(H_2O)_2]C_2O_4$ has been chosen as a model complex for studying the dependence of kinetic parameters on procedural factors for both the dehydration and deamination reactions. The complex also gives non-overlapping and clear-cut stoichiometric reactions of three reaction types, i.e. a reversible dehydration followed by a reversible deamination reaction.

EXPERIMENTAL

Preparation of the complex

The $[Cu(en)_2(H_2O)_2]C_2O_4$ was prepared according to the procedures described in the literature [13]. The violet complex was characterized by spectral and chemical methods. The average particle size, determined by a Fisher sub-sieve sizer, was 50 μ m. The copper content in the complex was analysed gravimetrically. Elemental analyses were carried out using a Carlo Erba microelemental analyser.

Instruments

The TG-DTG experiments were carried out with a DuPont 2000 thermal analyser in conjunction with a 951 thermogravimetric analyser. The experiments were carried out in pure dry nitrogen, purged at a rate of 50 cm³ min⁻¹. In order to study the effect of heating rate, the TG experiments were carried out at eight heating rates (1, 2, 5, 10, 15, 20, 50 and 100 °C min⁻¹); the sample mass was kept constant at 10 ± 0.1 mg in these experiments. To study the effect of sample mass, the heating rate was made constant (10° C min⁻¹) and eight sets of sample masses were employed. The samples were loaded directly onto the platinum sample pan of the TGA on which the mass was recorded directly. The particle size of the samples was the same in all the experiments, and the sample loading was done in as uniform a manner as possible. X-ray powder diffractograms were recorded using a Philips 1710 diffractometer with a PW 1729 X-ray generator using Cu K α radiation. Computational work was done with an IBM-PC/XT using a FORTRAN 77 program.

RESULTS AND DISCUSSION

Typical TG-DTG curves of $[Cu(en)_2(H_2O)_2]C_2O_4$ are given in Fig. 1. The first stage in the TG corresponds to the dehydration $(-2H_2O)$. The second stage involves the deamination (-en) of the bis(ethylenediamine) complex to form the mono(ethylenediamine)copper(II) oxalate. The third stage comprises the decomposition of the mono(amine) complex to CuO. The intermediates and the residue have been identified by X-ray diffraction analysis.

The temperature of inception (T_i) , DTG peak temperature (T_s) and the temperature of completion of reaction (T_t) for each stage with different sample masses and heating rates are tabulated in Table 1. For any given temperature interval, the extent of decomposition is greater at a slow heating rate than at a faster heating rate. As the heating rate increases the initial procedural decomposition temperature T_i exhibits a tendency to increase. Similarly, the temperature of completion of reaction, T_f , also increases with increasing heating rate and sample mass. It is also observed that the reaction interval $(T_f - T_i)$ increases as the heating rate is increased for both the dehydration and deamination reactions. Concerning the effect of sample mass, it can be observed that T_i was virtually constant for the dehydration and deamination stages. This observation is consistent with the literature

Fig. 1. TG-DTG curves of $[Cu(en)_2(H_2O)_2]C_2O_4$.

272

Phenomenological data for the thermal decor	mposition of [Cu(en) ₂ (H ₂ O) ₂]C ₂ O ₄
---	--

-							
Sample mass	Ti	T _f	$T_{\rm s}$	Heating rate	$T_{\rm i}$	$T_{\rm f}$	$T_{\rm s}$
(mg)	(°C)	(°C)	(°C)	$(^{\circ}C \min^{-1})$	(°C)	(°C)	(°C)
Dehydration							
1.076	85	105	96.3	1	70	90	82.3
2.487	65	102	91.2	2	80	100	90.6
4.885	70	107	99.2	5	75	104	95.2
7.436	70	115	101.4	10	94	126	99.0
10.00	70	105	99.0	15	80	132	113.8
12.494	73	123	107.4	20	90	143	118.5
15.206	86	128	112.4	50	96	183	134.7
20.743	78	130	113.2	100	100	205	152.4
Deamination							
1.076	170	197	191.2	1	155	190	179.6
2.487	170	202	193.2	2	159	194	185.6
4.885	177	210	202.9	5	166	203	194.2
7.436	175	215	204.5	10	169	212	190.0
10.00	160	205	190.0	15	183	232	217.5
12.494	170	219	206.1	20	175	230	214.8
15.206	173	221	209.8	50	183	240	225.3
20.743	170	224	211.5	100	205	290	249.3
Decomposition	ı						
1.076	1 97	285	263.8	1	190	260	237.1
2.487	202	285	263.3	2	194	262	242.2
4.885	210	285	265.4	5	203	275	254.4
7.436	215	285	273.5	10	212	270	250.4
10.00	205	272	250.4	15	232	300	285.0
12.494	219	280	270.1	20	230	292	272.6
15.206	221	285	264.9	50	240	305	278.6
20.743	224	292	270.0	100	290	365	336.4

reports [14]. For all three stages of decomposition, $T_{\rm f}$ increases as the sample mass is increased. This is because once the decomposition reaction has begun, it generally does not take place uniformly on every particle throughout the entire mass of the sample [15]. Under such non-homogeneous conditions, it would be expected that the time required for complete decomposition of a powdered solid would increase with increased sample mass. Because the furnace heating rate is linear, there would be a resultant increase in the observed value of $T_{\rm f}$ [16].

Kinetic parameters

The kinetic parameters were calculated using four integral equations, namely Coats-Redfern, MacCallum-Tanner, Horowitz-Metzger and

Sample	CR			МТ			MKN			НM		
mass	E	V	L	E	V	.	E	P	~	E	V	L .
(mg)	(kJ	(s^{-1})		(kJ	(s^{-1})		(FI	(s ⁻¹)		(kJ	(s ⁻¹)	
	mol ⁻¹)			mol^{-1})			mol^{-1})			mol^{-1})		
1.076	292.7	9.83×10^{39}	0.9969	292.5	9.31×10^{39}	0.9970	292.6	9.80×10^{39}	0.9969	299.2	8.02×10^{40}	0.9961
2.487	169.5	2.17×10^{22}	0.9984	168.3	1.32×10^{22}	0.9985	169.5	2.22×10^{22}	0.9984	173.1	6.95×10^{22}	0.9986
4.885	151.7	6.60×10^{19}	0.9984	150.3	3.79×10^{19}	0.9985	151.7	6.79×10^{19}	0.9984	164.2	3.93×10^{21}	0.9984
7.436	128.6	1.31×10^{16}	0.9979	127.2	7.48×10^{15}	0.9981	128.7	1.36×10^{16}	0.9979	136.9	1.82×10^{17}	0.9985
10.00	142.7	5.21×10^{18}	0.9975	141.2	2.88×10^{18}	0.9977	142.7	5.37×10^{18}	0.9975	157.2	$6.20 imes 10^{20}$	0.9980
12.494	118.0	3.12×10^{14}	0.9982	116.5	1.77×10^{14}	0.9984	118.1	3.24×10^{14}	0.9982	128.0	7.53×10^{15}	0.9980
15.206	130.2	2.54×10^{16}	0.9979	128.8	1.45×10^{16}	0.9981	130.3	2.63×10^{16}	0.9979	146.5	4.55×10^{18}	0.9972
20.743	105.8	4.36×10^{12}	0.9984	104.3	2.48×10^{12}	0.9986	106.0	4.54×10^{12}	0.9984	117.9	1.89×10^{14}	0.9978

CC
ล
Ξ.
2
\mathbb{C}
്
5
ž
ŝ
2
E
5
ĺΒ.
Ť
Ö.
Ŧ
0
8
Ċ.
ğ
Ľ
n
ţ
Ia
Ъ
eh.
Ğ
Зc
-
5
Ţ
š
as
E
e
Ē
H.
ŝ
nt
ie
E
dij
Ē.
f o
us
<u>.</u>
ati
ղե
Q
ii.
ISI
an
ų,
ğ
Ę
n
ă
90
SIL
E
IS
ete
ŭ
ra
pa
5
eti
Ē.
N

273

Sample	CR			MT			MKN			MH		
nass	E	F	۲ ۲	E	٩	_	E	V	r	Е	F	.
(gm	(kJ	(s^{-1})		(P	(s^{-1})		(F	(s^{-1})		(kJ	(s^{-1})	
	mol^{-1})			mol^{-1})			mol^{-1})			mol^{-1})		
1.076	277.9	6.04×10^{29}	0.9979	279.0	8.42×10^{29}	0.9980	277.9	6.11×10^{29}	0.9979	292.0	2.38×10^{31}	0.9974
2.487	251.5	4.97×10^{26}	0.9984	252.5	6.33×10^{26}	0.9985	251.6	5.06×10^{26}	0.9984	265.2	1.73×10^{28}	0.9985
4.885	235.8	2.54×10^{24}	0.9979	236.8	3.14×10^{24}	0.9980	235.8	2.59×10^{24}	0.9979	252.1	1.62×10^{26}	0.9982
7.436	216.1	1.19×10^{22}	0.9989	217.0	1.39×10^{22}	0666.0	216.2	1.22×10^{22}	0.9989	231.3	5.64×10^{23}	0.9989
10.00	204.3	2.75×10^{21}	0.9968	204.9	2.88×10^{21}	0.9971	204.5	2.82×10^{21}	0.9968	220.1	1.68×10^{23}	0.9966
12.494	194.8	4.30×10^{19}	0.9987	195.5	4.66×10^{19}	0.9988	194.9	4.42×10^{19}	0.9987	210.7	2.41×10^{21}	0.9986
15.206	194.3	2.69×10^{19}	0.9986	195.1	2.95×10^{19}	0.9987	194.4	2.77×10^{19}	0.9986	210.9	1.72×10^{21}	0.9986
20.743	185.3	2.44×10^{18}	0.9983	186.0	2.61×10^{18}	0.9984	185.4	2.51×10^{18}	0.9983	202.0	1.64×10^{20}	0.9984
CR, C	ats-Redfe	srn; MT, Mac(Callum-T	anner; MK	N, Madhusud	anan-Kri	shnan-Nir	nan; HM, Hor	owitz-Me	tzger.		

Kinetic parameters using non-mechanistic equations for different sample masses for the deamination reaction of $[Cu(en)_2(H_2O)_2]C_2O_4$ $(n = 1.18)^3$

4
щ
Ĕ
7
È

ନ
2
Ĩ
н 24
2
4
5
2
3
0
÷.
Ð
ŝ
e
ĭ
$\overline{\mathbf{O}}$
Ŧ
2
5
÷Ę:
Se.
J.
đ
.io
Sil
8
Ĩ
õ
<u></u>
D.
þ,
5
<u>ē</u>
5
Se
3.5
Ξ
e
<u>d</u>
an
ŝ
nt
ne.
ſſ
Ę.
Ĩ,
g
IS
10
μ,
n,
ទ
0
St.
n.
1a
2
ĕ
Ē
õ
βü
ısi
S
CL.
÷,
E
Ľ18
pa
<u>e</u> .
etic
inetic

.

Sample	CR			MT			MKN			HM		
mass	E	V	*	E	V	r	E	V	*	E	V	*
(mg)	(F)	(s^{-1})		(kJ	(s ⁻¹)		(F1	(s ⁻¹)		(FI	(s ⁻¹)	
	πol^{-1})			mol^{-1})			mol^{-1})			mol^{-1})		
1.076	234.8	1.55×10^{21}	0.9995	236.7	2.43×10^{21}	0.9995	234.9	1.59×10^{21}	0.9995	253.9	1.19×10^{23}	0.9999
2.487	228.6	2.78×10^{20}	0.9992	230.6	4.32×10^{20}	0.9993	228.7	2.86×10^{20}	0.9992	243.1	7.28×10^{21}	0.9984
4.885	244.6	8.49×10^{21}	1.0000	246.8	1.41×10^{22}	1.0000	244.7	8.70×10^{21}	1.0000	259.8	2.53×10^{23}	7666.0
7.436	226.0	9.23×10^{19}	0.9970	228.0	1.44×10^{20}	0.9972	226.1	9.49×10^{19}	0.9970	246.4	8.69×10^{21}	0.9979
10.00	212.9	3.05×10^{19}	0.9994	214.4	4.15×10^{19}	0.9995	213.0	3.14×10^{19}	0.9994	232.9	3.11×10^{21}	0.9994
12.494	234.7	9.11×10^{20}	0.9972	236.7	1.45×10^{21}	0.9974	234.8	9.35×10^{20}	0.9972	255.0	8.81×10^{22}	0.9979
15.206	258.1	1.91×10^{23}	0.9974	260.3	3.36×10^{23}	0.9975	258.1	1.95×10^{23}	0.9974	270.7	3.22×10^{24}	0.9962
20.743	267.8	1.43×10^{24}	0.9954	270.1	2.62×10^{24}	0.9957	267.8	1.46×10^{24}	0.9954	286.6	9.71×10^{25}	0.9970
^a CR Co	ats-Redfe	m. MT Mac(Tallum-T.	anner. MK	N Madhusuda	anan-Kri	hnan-Nin	an' HM Hord	witz-Me	taer		

Heating	CR	and a second		MT			MKN			HM		
rate	H	V	r	E		r.	E	V	L	E	V	*
(°C	F F	(s ⁻¹)		F a	(s ⁻¹)		(k]	(s^{-1})		F	(s ⁻¹)	
min ^{~1})	mol^{-1})			mol^{-1})	, ,		mol^{-1})			mol^{-1})	к т	
1	267.8	1.17×10^{37}	0.9978	267.1	9.28×10^{36}	0.9979	267.7	1.17×10^{37}	0.9978	277.1	2.81×10^{38}	0.9972
7	260.9	2.91×10^{35}	0.9985	260.3	2.35×10^{35}	0.9986	260.9	2.92×10^{35}	0.9985	269.1	4.40×10^{36}	1866.0
\$	183.1	1.73×10^{24}	0.9975	181.9	1.08×10^{24}	1166.0	183.1	1.77×10^{24}	0.9975	193.6	5.41×10^{25}	1799.0
10	142.7	5.21×10^{18}	0.9975	141.2	2.88×10^{18}	7799.0	142.7	5.37×10^{18}	0.9975	157.2	6.20×10^{20}	0.9980
15	118.6	1.56×10^{14}	0.9984	117.3	9.49×10^{13}	0.9985	118.7	1.62×10^{14}	0.9984	125.1	1.15×10^{15}	0.9982
20	115.3	1.96×10^{14}	0.9982	113.8	1.13×10^{14}	0.9984	115.4	2.04×10^{14}	0.9983	129.9	1.87×10^{16}	0.9976
50	79.9	7.59×10^{8}	0.9965	78.7	5.08×10^{8}	0.9971	80.1	7.91×10^{8}	0.9965	87.1	6.00×10^{9}	0.9941
100	65.1	$7.20 imes 10^{6}$	0.9971	64.0	5.37×10^{6}	0.9977	65.3	7.46×10^{6}	0.9972	73.9	8.25×10^{7}	0.9946
^a CR, Coi	ats-Redfern	1; MT, MacCi	allum-Ta	nner; MK	N, Madhusuda	nan-Kris	hnan-Nin	an; HM, Horc	witz-Met	zger.		

Kinetic parameters using non-mechanistic equations for different heating rates for the dehydration reaction of $[Cu(en), (H, O),]C, O_a$ (n = 1.32)^a

Heating	ß			MT			MKN			ΗM		
rate o Co	Е	, V	~	E	H .	•	E	F	L .	E	P V	- L
min ⁻¹)	(kJ mol ⁻¹)	(s ⁻¹)		(kJ mol ⁻¹)	(s ⁻¹)		(kJ mol ⁻¹)	(s^{-1})		(kJ mol ⁻¹)	(s ⁻¹)	
1	246.2	8.06×10^{25}	0.9987	246.9	9.45×10^{25}	0.9988	246.2	8.19×10^{25}	0.9987	260.1	3.29×10^{27}	0.9983
7	237.4	6.67×10^{24}	0.9985	238.1	7.78×10^{24}	0.9986	237.4	6.80×10^{24}	0.9985	251.1	2.49×10^{26}	0.9984
S	224.1	1.63×10^{23}	0.9982	224.9	1.88×10^{23}	0.9983	224.1	1.67×10^{23}	0.9982	238.2	6.38×10^{24}	0.9984
10	204.3	2.75×10^{21}	0.9968	204.9	2.88×10^{21}	1799.0	204.5	2.82×10^{21}	0.9968	220.1	1.68×10^{23}	0.9966
15	195.5	1.21×10^{19}	0.9986	196.5	1.43×10^{19}	0.9987	195.6	1.25×10^{19}	0.9987	205.2	1.27×10^{20}	0.9989
20	193.5	4.20×10^{19}	0.9987	194.2	4.61×10^{19}	0.9988	193.6	4.32×10^{19}	0.9987	213.5	6.24×10^{21}	0.9986
50	180.8	5.88×10^{17}	0.9940	181.8	6.82×10^{17}	0.9946	180.9	6.08×10^{17}	0.9940	189.8	5.15×10^{18}	0.9924
00	158.2	7.95×10^{14}	0.9904	159.5	9.48×10^{14}	0.9915	158.4	8.26×10^{14}	0.9905	168.0	7.49×10^{15}	0.9881

1
Ĵ,
Ő,
2
6
F
Ę,
â
u(e
<u>0</u>
of
uo
Ē
rea
g
ţ;
Ĩ.
am
de
he
r t
2
tes
13
ng
eati-
Å
ent
fer
dif
5
Ş
Ö
ati
ğ
į.
ust
Jar
<u>S</u>
Ē
jou
50
sin
s u
ter
me
ara
ñ,
etic
Ē
- E

Heating	СR			MT			MKN			MH		
rate	E	V	*	E	V	r.	E	N N	J.	E	V	×
	(FI	(s^{-1})		(PI)	(s^{-1})		(KJ	(s^{-1})		(kJ	(s^{-1})	
(, unu	mol ⁻¹)			mol^{-1})			mol ⁻¹)			mol^{-1})		
L	247.1	3.28×10^{22}	79997	248.8	4.97×10^{22}	7666.0	247.2	3.36×10^{22}	0.9997	259.7	6.47×10^{23}	0.9992
es.	238.6	5.41×10^{21}	0.9999	240.3	8.06×10^{21}	0.9999	238.7	5.54×10^{21}	6666.0	252.2	1.32×10^{23}	0.9996
ŝ	250.3	4.87×10^{22}	0.9988	252.3	7.98×10^{22}	0.9989	250.3	4.99×10^{22}	0.9988	263.3	9.49×10^{23}	0.9978
10	212.9	3.05×10^{19}	0.9994	214.4	4.15×10^{19}	0.9995	213.0	3.14×10^{19}	0.9994	232.9	3.11×10^{21}	0.9994
15	238.3	6.71×10^{20}	0.9987	240.6	1.15×10^{21}	0.9988	238.4	6.89×10^{20}	0.9987	257.5	4.46×10^{22}	0.9985
20	260.6	3.20×10^{23}	0666.0	263.0	5.83×10^{23}	1666'0	260,7	3.27×10^{23}	0666.0	274.2	6.40×10^{24}	0.9982
50	206.3	2.09×10^{18}	6666"0	208.4	3.17×10^{18}	0.9999	206.5	2.15×10^{18}	6666.0	220.9	5.05×10^{19}	0.9998
100	215.9	3.41×10^{17}	0.9965	219.0	6.63×10^{17}	0.9968	216.0	3.53×10^{17}	0.9965	229.0	4.57×10^{18}	0.9948

Kinetic parameters using non-mechanistic equations for different heating rates for the decomposition reaction of $[Cu(en)_2(H_2O)_3]C_2O_4$ (n = 1.05)^a

Madhusudanan-Krishnan-Ninan. The order parameter n was evaluated using the Coats-Redfern equation by an iteration method as described in our earlier publications [17,18]. The order parameters for each stage were chosen by taking the average of all the 16 values obtained for both the heating rate and sample mass variations. With the values of n thus obtained, the kinetic parameters were computed using the four non-mechanistic equations for the dehydration, deamination and decomposition reactions. The activation energy (E), the pre-exponential factor (A) and the correlation coefficients (r) for each stage evaluated from the TG curves for different sample masses and heating rates are given in Tables 2–7.

From Tables 2–7 it can be seen that both E and A calculated using all four non-mechanistic equations for the dehydration and deamination reactions are dependent on heating rate and sample mass—they decrease with increase in either heating rate or sample mass. Thus, so far as the kinetic parameters are concerned, an increase in heating rate for constant sample mass has the same qualitative effect as an increase in sample mass for constant heating rate. However, from Tables 4 and 7, it can be noted that the kinetic parameters are not appreciably affected by either heating rate or sample mass for the decomposition of Cu(en)C₂O₄ to CuO. The minor variations are rather irregular here.

The regular trend in these activation parameters relative to changes in heating rate and sample mass for the dehydration and deamination processes makes the data amenable to statistical analysis. Standard types of curve fits such as linear, rectangular hyperbolic, parabolic and exponential, were tried using various functions of these factors, and the best-fit curve was chosen. It was found that for all four kinetic equations the E or log A vs. sample mass or heating rate relationships for the dehydration stage could be best represented as a rectangular hyperbola of the type

$$y = a + b/x$$

that is

E = a + b/m log A = a + b/m

and

 $E = a + b/\phi$ log $A = a + b/\phi$

where a and b are empirical constants, different for the four non-mechanistic equations, and m and ϕ are sample mass and heating rate respectively. Similarly for the deamination stage, the relationships between the kinetic parameters E or log A and sample mass or heating rate are best represented by a second-degree equation (parabola), of the type

$$y = a + bx + cx^2$$

that is

 $E = a + bm + cm^2 \qquad \log A = a + bm + cm^2$

Curve-fit constants for the dehydration reaction using non-mechanistic equations ^a

	Sample	mass			Heating rate			
	a	b	F	R^2	a	b	F	R^2
Correlat	ion with E	5						
CR	107.25	194.22	173.10	0.9665	106.07	197.80	22.06	0.7862
MT	105.61	195.66	174.30	0.9667	104.75	198.56	22.17	0.7870
MKN	107.37	1 94 .00	173.20	0.9665	106.21	197.55	22.06	0.7862
HM	119.89	185.38	96.80	0.9416	116.33	196.58	20.91	0.7770
Correlat	ion with lo	og A						
CR	13.13	28.23	147.02	0.9608	12.79	29.46	22.96	0.7929
МТ	12.85	28.48	149.02	0.9613	12.59	29.58	23.26	0.7949
MKN	13.15	28.21	147.05	0.9608	12.81	29.44	22.96	0.7928
HM	14.88	27.02	86.99	0.9355	14.16	29.46	21.53	0.7820

^a CR, Coats-Redfern; MT, MacCallum-Tanner; MKN, Madhusudanan-Krishnan-Ninan; HM, Horowitz-Metzger.

and

$$E = a + b\phi + c\phi^2$$
 log $A = a + b\phi + c\phi^2$

where a, b and c are empirical constants for different equations. The reliability of the curve fitting using the data obtained from four non-mechanistic equations was evaluated by the F-test [19]. The values of a and b along with the corresponding Fisher constant F and coefficient of determination R^2 for the dehydration stage, and the values of a, b and c

TABLE 9

I surve the comptended top th		#4444tran 1101#	
	е осапонанон	TEACHOR USID	IV HOH-INCLUATION COMATIONS
		TARADICAL MOTI	

	Sample	mass				Heating	g rate			
	a	b	с	F	R^2	.a	b	с	F	R^2
Correla	ation wit	h <i>E</i>								
CR	282.37	- 10.75	0.2991	131.01	0.9813	234.52	-1.96	0.0123	17.53	0.8752
MT	283.58	- 10.82	0.3015	130.60	0.9812	235.22	-1.96	0.0122	17.23	0.8733
MKN	282.35	- 10.73	0.2985	131.13	0.9813	234.58	-1.96	0.0122	17.57	0.8755
HM	296.19	- 10.48	0.2929	114.56	0.9786	249.31	-2.04	0.0125	21.57	0.8961
Correla	ation wit	h log A								
CR	30.26	-1.28	0.0349	116.13	0.9789	24.55	- 0.2452	0.0015	18.22	0.8793
MT	30.41	- 1.29	0.0354	117.88	0.9792	24.60	-0.2456	0.0015	18.04	0.8783
MKN	30.26	-1.28	0.0349	116.14	0.9789	24.55	-0.2450	0.0015	18.21	0.8793
HM	31.82	- 1.26	0.0342	106.29	0.9770	26.24	-0.2574	0.0016	20.09	0.8894

^a CR, Coats-Redfern; MT, MacCallum-Tanner; MKN, Madhusudanan-Krishnan-Ninan; HM, Horowitz-Metzger.

Fits		E				
		Sample ma	155	Heating	ate	
		\overline{F}	R^2	\overline{F}	R^2	
Linear	CR	6.60	0.5238	7.27	0.5479	
	MT	6.57	0.5230	7.21	0.5457	
	MKN	6.60	0.5238	7.27	0.5478	
	HM	5.78	0.4907	7.70	0.5620	
Hyperbola	CR	173.10	0.9665	22.06	0.7868	
	MT	174.32	0.9667	22.17	0.7870	
	MKN	173.17	0.9665	22.06	0.7862	
	HM	96.77	0.9416	20.90	0.7770	
Parabola	CR	6.01	0.7066	10.96	0.8144	
	MT	6.01	0.7063	10.86	0.8129	
	MKN	6.01	0.7066	10.96	0.8143	
	HM	4.87	0.6611	12.04	0.8281	
Exponential	CR	10.64	0.6396	16.03	0.7277	
	MT	10.68	0.6403	15.99	0.7272	
	MKN	10.63	0.6394	15.99	0.7272	
	HM	8.42	0.5841	15.91	0.7263	

The Fisher constant (F) and the coefficient of determination (R^2) for the dehydration reaction of $[Cu(en)_2(H_2O)_2]C_2O_4^{a}$

^a CR, Coats-Redfern; MT, MacCallum-Tanner; MKN, Madhusudanan-Krishnan-Ninan; HM, Horowitz-Metzger.

along with the Fisher constant and R^2 for the deamination stage are given in Tables 8 and 9. The critical values of the Fisher constants for the hyperbolic fit and parabolic fit, at 99% confidence levels, are 13.74 and 13.27 respectively for the dehydration and deamination processes. It was found that the F-statistic is significant at 99% confidence level for more than one fit for the dehydration and deamination stages. Therefore, to choose the best fit among them, the coefficient of determination R^2 was used [20]. The R^2 is a measure of association between a dependent variable and an optimal combination of two or more independent variables. It is the proportion of the dependent variables variance shared with the optimally weighted independent variables. The larger the R^2 the better the fit. The Fisher constant F and the coefficient of determination R^2 for the different fits for the dehydration and deamination stages are given in Tables 10-13. From Tables 10-13 it can be seen that R^2 has maximum values for a hyperbolic fit for the dehydration reaction and has maximum values for a parabolic fit for the deamination reaction. It is also observed that the confidence level of all the correlations is above 99%, indicating that the variables E and $\log A$ computed from the four non-mechanistic equations are best represented by

Fits		log A				uofi.
		Sample ma	iss	Heating r	ate	
		\overline{F}	R^2	\overline{F}	R^2	
Linear	CR	7.01	0.5390	7.18	0.5450	·······
	MT	6.96	0.5372	7.06	0.5407	
	MKN	7.01	0.5390	7.19	0.5452	
	HM	6.20	0.5085	7.64	0.5603	
Hyperbola	CR	147.02	0.9608	22.96	0.7929	
	MT	149.02	0.9613	23.25	0.7949	
	MKN	147.04	0.9608	22.95	0.7928	
	HM	86.99	0.9355	21.52	0.7820	
Parabola	CR	6.16	0.7114	11.07	0.8159	
	MT	6.14	0.7107	10.88	0.8132	
	MKN	6.16	0.7114	11.08	0.8160	
	HM	5.02	0.6678	12.13	0.8292	
Exponential	CR	12.14	0.6693	18.38	0.7539	
	MT	12.16	0.6696	18.11	0.7512	
	MKN	12.13	0.6692	18.37	0.7538	
	HM	9.56	0.6144	18.05	0.7506	

The Fisher constant (F) and the coefficient of determination (R^2) for the dehydration reaction of $[Cu(en)_2(H_2O)_2]C_2O_4^{a}$

^a CR, Coats-Redfern; MT, MacCallum-Tanner; MKN, Madhusudanan-Krishnan-Ninan; HM, Horowitz-Metzger.

a rectangular hyperbola for the dehydration stage and by a parabola for the deamination stage. By comparing the values for the Fisher constants and R^2 given in Tables 8 and 9, it can be inferred that the kinetic parameters are better correlated to sample mass than to heating rate.

Mechanism of the reaction

Similar quantitative correlations between the kinetic parameters and procedural factors have also been obtained using mechanisms invoking kinetic equations. The TG data for the different heating rates and sample masses were analysed using nine mechanism-based equations [21] and the results are given in Tables 14–19. Tables 14 and 15 give the kinetic parameters for the dehydration of diaquabis(ethylenediamine)copper(II) oxalate (to give bis(ethylenediamine)copper(II) oxalate) for different heating rates and sample masses respectively. Tables 16 and 17 give the corresponding values for the deamination process. The kinetic parameters for the deamination process are shown in Tables 18 and 19, respectively.

Fits				
	Sample ma	iss	Heating r	ate
	F	R^2	F	R^2
CR	32.14	0.8427	17.41	0.7437
MT	31.96	0.8419	17.14	0.7408
MKN	32.19	0.8429	17.43	0.7440
HM	31.02	0.8380	20.51	0.7737
CR	31.70	0.8409	12.92	0.6830
MT	31.68	0.8408	13.07	0.6854
MKN	31.69	0.8408	12.91	0.6823
HM	31.54	0.8402	10.89	0.6449
CR	131.01	0.9813	17.53	0.8752
MT	130.59	0.9812	17.22	0.8733
MKN	131.12	0.9813	17.57	0.8755
HM	114.56	0.9786	21.57	0.8961
CR	42.26	0.8757	24.13	0.8009
MT	41.94	0.8748	23.62	0.7975
MKN	42.33	0.8759	24.14	0.8010
HM	39.34	0.8677	28.51	0.8261
	CR MT MKN HM CR MT MKN HM CR MT MKN HM CR MT MKN HM	E Sample ma F Sample ma CR 32.14 MT 31.96 MKN 32.19 HM 31.02 CR 31.70 MT 31.68 MKN 31.69 HM 31.54 CR 131.01 MT 130.59 MKN 131.12 HM 114.56 CR 42.26 MT 41.94 MKN 42.33 HM 39.34	E Sample mass R ² CR 32.14 0.8427 MT 31.96 0.8419 MKN 32.19 0.8429 HM 31.02 0.8380 CR 31.70 0.8409 MT 31.68 0.8408 MKN 31.69 0.8408 MKN 31.69 0.8408 MKN 31.69 0.8408 MKN 31.54 0.8402 CR 131.01 0.9813 MT 130.59 0.9812 MKN 131.12 0.9813 MKN 131.12 0.9813 HM 114.56 0.9786 CR 42.26 0.8757 MT 41.94 0.8748 MKN 42.33 0.8759 HM 39.34 0.8677	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

The Fisher constant (F) and the coefficient of determination (R^2) for the deamination reaction of $[Cu(en)_2(H_2O)_2]C_2O_4^a$

^a CR, Coats-Redfern; MT, MacCallum-Tanner; MKN, Madhusudanan-Krishnan-Ninan; HM, Horowitz-Metzger.

From these tables it can be seen that in almost all cases the correlation coefficients are very close to unity, indicating near-perfect fits. A choice of the probable mechanism from the best-fit curve thus becomes difficult. In such a situation, Satava [21] has chosen the function $g(\alpha)$ which yielded kinetic parameters in agreement with those obtained by the numerical method he proposed. In the present case a comparison with the values obtained by the Coats-Redfern method will be more appropriate as this method was also used here for solving the exponential integral. The kinetic parameters computed from the Coats-Redfern equation together with those from the mechanistic equation (Mampel equation) for the dehydration, deamination and decomposition reactions are shown in Tables 20, 21 and 22, respectively. It was observed that the closest agreement was obtained using the Mampel equation for all three stages of decomposition. From these tables it can be observed that all three stages of decomposition follow the mechanism of random nucleation with the formation of one nucleus on each particle. The kinetic parameters calculated from the mechanistic equation for the decomposition reaction are not affected appreciably by either heating rate or sample mass. For the dehydration and deamination reactions the

Fits		log A				
		Sample ma	ass	Heating r	ate	
		\overline{F}	R^2	\overline{F}	R^2	
Linear	CR	34.51	0.8519	18.23	0.7524	
	MT	34.33	0.8512	18.02	0.7502	
	MKN	34.50	0.8519	18.23	0.7524	
	HM	33.95	0.8498	20.23	0.7713	
Hyperbola	CR	31.66	0.8407	11.51	0.6575	
	MT	31.79	0.8412	11.66	0.6602	
	MKN	31.66	0.8407	11.51	0.6574	
	HM	31.57	0.8403	9.73	0.6185	
Parabola	CR	11 6.13	0.9789	18.21	0.8793	
	MT	117.88	0.9792	18.04	0.8783	
	MKN	116.14	0.9789	18.21	0.8793	
	HM	106.29	0.9770	20.09	0.8894	
Exponential	CR	49.48	0.8919	27.13	0.8189	
	MT	49.28	0.8915	26.76	0.8169	
	MKN	49.45	0.8918	27.12	0.8188	
	HM	46.70	0.8862	29.65	0.8317	

The Fisher constant (F) and the coefficient of determination (R^2) for the deamination reaction of $[Cu(en)_2(H_2O)_2]C_2O_4^{a}$

^a CR, Coats-Redfern; MT, MacCallum-Tanner; MKN, Madhusudanan-Krishnan-Ninan; HM, Horowitz-Metzger.

kinetic parameters show a systematic trend — they decrease with increase in either heating rate or sample mass. These findings are quite similar to the trends observed in the case of mechanisms not invoking kinetic equations.

As in the case of the non-mechanistic approach, a statistical analysis was carried out to establish correlations of kinetic parameters (for stages I and II) from the mechanism-based equation with heating rate and sample mass. It was found that the curves of E or log A vs. heating rate or sample mass could be best fitted to a rectangular hyperbola for the dehydration reaction as

 $E = 96.82 + 164.06/m \quad \log A = 8.55 + 23.89/m$ $E = 93.62 + 174.81/\phi \quad \log A = 7.99 + 25.91/\phi$ For the deamination reaction, the fit followed a parabolic relation $E = 263.15 - 9.7435m + 0.2684 m^{2}$ $\log A = 25.01 - 1.1656m + 0.0314 m^{2}$ and $E = 219.59 - 1.8751\phi + 0.0116\phi^{2}$

 $\log A = 19.75 - 0.2304\phi + 0.0014\phi^2$

~	ŧ
Ц	1
Ħ	ļ
2	1
P	1

\odot
မ္မ
E .
-
0
++
9
_
S.
3
8
e)
đ
8
E.
S
_*
Q,
ປີ
<u> </u>
÷.
Q.
1
U
~
F
ુ
7
$\boldsymbol{\Xi}$
ئ يون
0
g
щ.
31
÷Ð.
S.
-5
Đ.
÷
£,
\$
5
La l
50
ĩ
1
ea
2
H
ē
5
3
÷
i.
2
10
ğ
Ĵ.
3
nf
5
0
3
Ъ,
31
5
ð
u
ត្ត
Ĵ.
n
မ္ဘာ
÷.
ñ
2
5
e,
E.
B
a l
يلسير د م
Ę,
ē
E.

Heating rate °		1	2	ст,	4	ŝ	9	7	œ	6
1	E a A b	3 44.4 6.60×10 ⁴⁴ 0.96393	380.5 9.88×10 ⁴⁹ 0.97500	428.8 4.64×10 ⁵⁶ 0.98646	396.2 5.40×10 ⁵¹ 0.97937	238.2 3.80×10 ²⁹ 0.99385	116.2 2.26×10 ¹¹ 0.99360	75.4 1.58×10 ⁵ 0.99308	199.5 2.40×10 ²³ 0.98100	2111.4 1.05×10 ²⁵ 0.98613
7	HAL	307.4 3.52×10 ³⁸ 0.95710	344.8 6.38×10 ⁴³ 0.97066	398.1 1.11×10 ⁵¹ 0.98553	362.0 5.05×10 ⁴⁵ 0.97637	226.4 2.18×10 ²⁷ 0.99451	110.1 2.28×10 ¹⁰ 0.99397	71.4 4.22×10 ⁴ 0.99364	182.9 3.56×10 ²⁰ 0.97870	196.0 2.15×10 ²² 0.98498
Ś	H. K.	234.9 1.17×10 ²⁸ 0.96569	259.6 2.84×10 ³¹ 0.97693	293.1 6.18×10 ³⁵ 0.98833	270.5 2.66×10 ³² 0.98136	162.2 1.33×10^{18} 0.99493	78.1 7.63×10 ⁵ 0.99459	50.0 5.33×10^{1} 0.99390	135.2 5.93×10 ¹³ 0.98279	143.5 6.90×10 ¹⁴ 0.98783
10	H K L	189.3 7.85×10 ²¹ 0.98373	209.0 3.65×10 ²⁴ 0.98986	234.2 5.20×10 ²⁷ 0.99522	217.3 1.44×10 ²⁵ 0.99204	127.8 2.93×10 ¹³ 0.99740	60.9 4.55×10 ³ 0.99718	38.6 2.08×10 ⁰ 0.99700	107.9 1.36×10 ¹⁰ 0.99269	114.1 8.08×10 ¹⁰ 0.99500
15	B.K.	156.1 4.67×10 ¹⁵ 0.97554	$\begin{array}{c} 172.2 \\ 4.82 \times 10^{17} \\ 0.98470 \end{array}$	$193.7 \\ 1.25 \times 10^{20} \\ 0.99339$	179.2 1.08×10 ¹⁸ 0.98817	105.5 2.06×10 ⁹ 0.99771	49.5 4.02×10 ¹ 0.99730	30.8 9.30×10 ⁻² 0.99683	88.3 3.37×10 ⁶ 0.98906	93.6 1.31×10 ⁷ 0.99288
20	ぼべょ	143.0 3.58×10 ¹⁴ 0.96763	160.1 5.71×10 ¹⁶ 0.97894	183.1 2.89×10 ¹⁹ 0.98996	167.6 1.58×10 ¹⁷ 0.98324	101.1 1.66×10^9 0.99597	47.4 4.17×10 ¹ 0.99521	29.5 1.05×10 ⁻¹ 0.99445	82.7 1.57×10° 0.98424	88.4 7.25×10° 0.98924
50	H. L.	100.8 1.03×10 ⁸ 0.95774	113.0 2.69×10 ⁹ 0.97090	129.2 1.10×10 ¹¹ 0.98401	118.3 3.30×10 ⁹ 0.97595	70.1 3.13×10 ⁴ 0.99154	31.7 2.32×10^{-1} 0.98939	18.8 4.11×10 ^{−3} 0.98646	57.2 2.27×10 ² 0.97573	61.2 5.63×10 ² 0.98210
100	E K L	85.4 6.80×10 ⁵ 0.96433	95.2 7.71×10 ⁶ 0.97610	107.9 9.92× 10^7 0.98746	99.3 6.47×10 ⁶ 0.98049	57.5 6.18×10 ² 0.99346	25.2 4.21×10 ⁻² 0.99123	14.5 1.70×10 ^{−3} 0.98783	47.5 1.15×10 ¹ 0.97979	50.5 2.13×10 ¹ 0.98541
^a E, kJ m	ol-1, b	A, s ⁻¹ . ° C	min ⁻¹ .							

15	
3LE	
TAE	

0°C	
tte, 1	
ng ra	
(heati	
20 ⁴	
0)2)	
$_{2}(H_{2})$	
u(en)	
of [C	
tion	
nydra	
r del	
ses fc	
mas	
sample	
ferent	
or dif	
ons fc	
quatic	
tic ec	
hanis	
e mec	
, nine	
using	
neters	
param	
netic I	()
Kin	min

Sample mass ^c		1	2	3	4	5	6	7	8	6
1.076	т А ^Б	342.9 2.73×10 ⁴³ 0.94347	383.7 1.18×10 ⁴⁹ 0.95928	443.1 1.13×10 ⁵⁷ 0.97773	402.7 1.57×10 ⁵¹ 0.96616	252.8 1.56×10 ³¹ 0.98982	$ \begin{array}{r} 123.3 \\ 4.51 \times 10^{12} \\ 0.98936 \end{array} $	80.2 2.51×10 ⁶ 0.98885	$203.8 \\ 5.42 \times 10^{23} \\ 0.96901$	218.5 5.07×10 ²⁵ 0.97716
2.487	A F	217.6 3.83×10 ²⁵ 0.97602	240.6 4.97×10 ²⁸ 0.98517	271.7 4.47×10 ³² 0.99391	250.7 3.49×10 ²⁹ 0.98866	150.2 2.91×10 ¹⁶ 0.99808	72.0 1.52×10 ⁵ 0.99788	46.0 2.25×10 ¹ 0.99784	125.1 2.68×10 ¹² 0.98991	132.8 2.50×10 ¹³ 0.99357
4.885	H K L	205.2 7.88×10 ²³ 0.98003	224.9 3.48×10 ²⁶ 0.98772	250.6 5.28×10 ²⁹ 0.99470	233.3 1.39×10 ²⁷ 0.99051	136.3 3.27×10 ¹⁴ 0.99805	65.1 1.56×10 ⁴ 0.99798	$\begin{array}{c} 41.4 \\ 4.78 \times 10^{0} \\ 0.99755 \end{array}$	115.9 1.39×10 ¹¹ 0.99147	122.2 8.31×10 ¹¹ 0.99436
7,436	ヨイト	169.7 1.92×10^{18} 0.98082	186.8 3.38×10 ²⁰ 0.98879	209.8 1.84×10 ²³ 0.99595	194.3 9.55×10 ²⁰ 0.99165	$\begin{array}{c} 114.5 \\ 1.06 \times 10^{11} \\ 0.99890 \end{array}$	54.2 2.54×10 ² 0.99878	34.0 2.90×10 ⁻¹ 0.99855	96.1 9.49×10 ⁷ 0.99265	101.8 4.44×10 ⁸ 0.99565
10.00	H K L	189.3 7.85×10 ²¹ 0.98373	209.0 3.65×10 ²⁴ 0.98986	234.2 5.20×10 ²⁷ 0.99522	217.3 1.44×10 ²⁵ 0.99204	127.8 2.93×10 ¹³ 0.99740	60.9 4.55×10 ³ 0.99718	38.6 2.08×10 ⁰ 0.99700	107.9 1.36×10 ¹⁰ 0.99269	$\begin{array}{c} 114.1 \\ 8.08 \times 10^{10} \\ 0.99500 \end{array}$
12.494	Ш M г	153.1 6.51×10 ¹⁵ 0.97441	169.6 8.78×10 ¹⁷ 0.98392	191.4 3.22×10 ²⁰ 0.99279	176.7 2.19×10 ¹⁸ 0.98745	104.7 3.33×10 ⁹ 0.99727	49.2 4.29×10^{1} 0.99691	30.7 8.63×10 ⁻² 0.99651	87.2 4.16×10^{6} 0.98840	92.6 1.76×10 ⁷ 0.99231
15.206	H K r	167.4 1.12×10 ¹⁸ 0.96810	185.6 2.81×10 ²⁰ 0.97885	209.9 2.47×10 ²³ 0.98951	$\begin{array}{c} 193.5 \\ 9.36 \times 10^{20} \\ 0.98299 \end{array}$	115.3 1.57×10 ¹¹ 0.99542	54.6 3.10×10 ² 0.99489	34.3 3.32×10 ⁻¹ 0.99422	95.9 9.77×10^7 0.98407	101.9 5.14×10 ⁸ 0.98880
20.743	ы <i>к</i> г	142.8 1.59×10 ¹⁴ 0.97617	157.2 1.05×10^{16} 0.98484	$\begin{array}{c} 175.7\\ 1.26 \times 10^{18}\\ 0.99281 \end{array}$	163.3 1.84×10^{16} 0.98799	94.9 1.02×10^{8} 0.99700	44 .3 7.16×10 ⁰ 0.99650	27.4 2.54×10 ⁻² 0.99576	80.1 3.28×10 ⁵ 0.98867	84.7 1.05×10° 0.99222
^a E, kJ n	nol ⁻¹ .	$^{\rm b}$ A, s ⁻¹ . ^c mg	, ,	A STATE OF A		National Annual Society of the Socie		NAMES AND ADDRESS OF		

-00
-
μ.
H
2
<
£

Шg
-
0+
10
nass,
ole I
amj
<u>م</u>
20
21
ିରୁ
E
n)2
u(e
Q
of
tion
una
lean
or
ŝ
rate
ing
cat
it h
i Gi
liffe
жd
s fc
ion
uat
5
stic
ani
Ϋ́,
ă
nine
ing
s u
ter
ame
Jari
ic l
net
5

Heating rate °			7	m	4	ŝ	6	L	00	6
	а р а	339.1 1.61×10 ³³ 0.97621	373.0 9.99×10 ³⁶ 0.98509	418.5 6.72×10 ⁴¹ 0.99348	387.8 1.35×10 ³⁸ 0.98843	230.8 1.09×10 ²¹ 0.99774	111.7 9.45×10 ⁶ 0.99751	72.0 1.64×10 ² 0.99756	194.3 2.04×10 ¹⁶ 0.98973	205.5 3.13×10 ¹⁷ 0.99331
2	ぼイト	317.2 3.06×10 ³⁰ 0.97715	351.7 2.03×10 ³⁴ 0.98620	398.5 1.67×10 ³⁹ 0.99454	366.9 2.93×10 ³⁵ 0.98954	$\begin{array}{c} 221.5\\ 8.50 \times 10^{19}\\ 0.99822\end{array}$	107.0 3.60×10 ⁶ 0.99810	68.8 1.06×10 ² 0.99818	$\begin{array}{c} 183.9 \\ 1.31 \times 10^{15} \\ 0.99086 \end{array}$	195.4 2.11×10 ¹⁶ 0.99429
λ.	B 4 r	294.7 4.57×10 ²⁷ 0.97767	327.5 1.65×10 ³¹ 0.98687	373.0 7.97×10 ³⁵ 0.99545	342.2 1.97×10 ³² 0.99041	208.3 2.26×10 ¹⁸ 0.99859	100.3 8.90×10 ⁵ 0.99853	64.3 5.52×10 ¹ 0.99849	171.4 4.93×10 ¹³ 0.99182	182.6 6.95×10 ¹⁴ 0.99521
10	臣々と	297.0 3.18×10 ²⁸ 0.97831	322.5 1.78×10 ³¹ 0.98620	356.3 4.28×10 ³⁴ 0.99338	333.5 8.23×10 ³¹ 0.98908	193.1 1.22×10 ¹⁷ 0.99666	92.7 2.85 ×10 ⁵ 0.99636	59.3 3.20×10 ¹ 0.99606	166.0 3.36×10 ¹³ 0.98998	174.3 2.26×10 ¹⁴ 0.99307
15	ы ч .	258.2 1.71×10 ²² 0.97983	287.3 1.54×10 ²⁵ 0.98840	327.2 9.46 × 10 ²⁸ 0.99619	300.2 9.55×10 ²⁵ 0.99169	$\begin{array}{c} 181.9\\ 3.59 \times 10^{14}\\ 0.99899\end{array}$	86.8 1.72×10 ⁴ 0.99897	55.2 5.30×10 ⁰ 0.99890	149.7 4.33×10^{10} 0.99283	159.5 3.70×10 ¹¹ 0.99607
20	N K .	266.0 1.20×10 ²⁴ 0.98030	293.5 8.78×10 ²⁶ 0.98835	330.1 3.09×10 ³⁰ 0.99561	305.4 4.58×10 ²⁷ 0.99130	181.3 1.66×10 ¹⁵ 0.99875	86.7 4.38×10 ⁴ 0.99857	55.1 1.10×10 ¹ 0.99817	152.1 3.39×10 ¹¹ 0.99230	161.1 2.52×10 ¹² 0.99543
50	1 4 1	230.4 2.93×10 ¹⁹ 0.95118	259.2 2.28×10 ²² 0.96563	298.7 1.15×10 ²⁶ 0.98093	272.0 1.32×10 ²³ 0.97145	167.3 1.88×10 ¹³ 0.99022	79.5 6.83×10 ³ 0.98922	50.2 4.13×10 ⁰ 0.98798	135.5 2.73×10° 0.97297	145.2 2.21×10 ¹⁰ 0.97981
00	H	200.5 4.41 × 10 ¹⁵ 0.94234	226.5 1.35×10 ¹⁸ 0.95813	262.0 1.75×10 ²¹ 0.97496	$\begin{array}{c} 238.1 \\ 5.09 \times 10^{18} \\ 0.96449 \end{array}$	146.3 4.25×10 ¹⁰ 0.98561	68.8 4.12×10 ² 0.98361	43.0 7.53×10 ¹ 0.98136	117.9 1.88×10^7 0.96540	126.7 1.09×10 ⁸ 0.97327
E, kJ m	31-1. b	A, s ⁻¹ , c ° C 1	min ⁻¹ .	and the second	W(1))	n de la companya de la constante de la constant	and a factor of the second	n de la constante de la constan		

17
Е
AB
E

Kinetic parameters using nine mechanistic equations for different sample masses for deamination of $[Cu(en)_2(H_2O)_2]C_2O_4$ (heating rate, $10^{\circ}C$ min⁻¹)

Sample mass °		1	2	3	4	5	9	L	8	6
1.076	E P P	384.6 2.37×10 ³⁸ 0.97316	422.5 3.32×10 ⁴² 0.98246	473.2 6.42×10 ⁴⁷ 0.99167	439.0 6.37×10 ⁴³ 0.98602	260.9 6.08×10 ²⁴ 0.99665	126.6 2.31×10 ⁹ 0.99656	81.8 1.40×10 ⁴ 0.99621	220.3 5.04×10 ¹⁹ 0.98743	232.7 9.93×10 ²⁰ 0.99132
2.487	ぼべい	325.1 3.04×10 ³¹ 0.97490	362.7 3.94×10 ³⁵ 0.98490	415.1 1.16×10 ⁴¹ 0.99431	379.7 8.46×10 ³⁶ 0.98875	233.3 3.62×10 ²¹ 0.99827	112.8 5.31×10 ⁷ 0.99819	72.6 1.09×10 ³ 0.99798	$190.8 \\ 1.78 \times 10^{16} \\ 0.99019$	203.7 3.98×10 ¹⁷ 0.99415
4.885	エイト	319.2 1.43×10 ³⁰ 0.98087	352.3 4.84×10 ³³ 0.98905	397.6 1.81×10 ³⁸ 0.99633	367.0 5.36×10 ³⁴ 0.99208	220.3 4.07×10 ¹⁹ 0.99868	106.3 5.40×10 ⁶ 0.99863	68.2 2.32×10 ² 0.99847	183.7 1.14×10 ¹⁵ 0.99332	194.9 1.51×10 ¹⁶ 0.99617
7.436	HK.	295.2 2.16×10 ²⁷ 0.98291	326.3 4.27×10 ³⁰ 0.99030	367.5 5.31×10 ³⁴ 0.99672	339.8 3.39×10 ³¹ 0.99297	202.5 3.21×10 ¹⁷ 0.99922	97.3 4.58×10 ⁵ 0.99911	62.3 4.34×10^{1} 0.99887	169.7 2.45×10 ¹³ 0.99389	179.8 2.47×10 ¹⁴ 0.99650
10.00	モイト	297.0 3.18×10 ²⁸ 0.97831	322.5 1.78×10^{31} 0.98620	356.3 4.28×10 ³⁴ 0.99338	333.5 8.23×10 ³¹ 0.98908	193.1 1.22×10 ¹⁷ 0.99666	92.7 2.85×10 ⁵ 0.99636	59.3 3.20×10 ¹ 0.99606	166.0 3.36×10 ¹³ 0.98998	174.8 2.26×10 ¹⁴ 0.99307
12.494	ぼくい	274.7 9.55×10 ²⁴ 0.98264	301.6 6.26×10 ²⁷ 0.98977	336.5 1.53×10 ³¹ 0.99601	313.0 2.93×10 ²⁸ 0.99229	183.5 2.05×10 ¹⁵ 0.99867	87.8 3.49×10 ⁴ 0.99856	55.9 7.63×10 ⁰ 0.99831	155.7 5.97×10 ¹¹ 0.99317	164.3 4.04×10 ¹² 0.99583
15.206	HK.	273.5 4.29×10 ²⁴ 0.98286	300.1 2.51×10^{27} 0.99006	335.2 5.94×10 ³⁰ 0.99645	311.6 1.15×10 ²⁸ 0.99264	182.9 1.27×10 ¹⁵ 0.99888	87.5 2.72×10 ⁴ 0.99869	55.7 6.42×10 ⁰ 0.99849	155.0 3.72×10 ¹¹ 0.99363	163.6 2.48×10 ¹² 0.99619
20.743	H K L	255.6 3.99×10 ²² 0.98187	281.7 2.06×10 ²⁵ 0.98964	316.7 4.70×10 ²⁸ 0.99642	293.1 9.31×10 ²⁵ 0.99241	173.7 1.12×10 ¹⁴ 0.99879	82.9 7.91×10 ³ 0.99864	52.6 2.77×10 ⁰ 0.99852	145.8 3.22×10 ¹⁰ 0.99331	154.4 2.15×10 ¹¹ 0.99620
^a E, kJ n	1 loc	$^{\circ}$ A, s ⁻¹ . ^c mg.								

Kinetic parameters using nine mechanistic equations for different heating rates for decomposition of $[Cu(en)_2(H_2O)_2]C_2O_4$ (sample mass, 10 ± 0.1 mg)

ò										
Heating		1	2	3	4	5	6	7	8	6
rate č										
1	E a A b	355.6 1.63 × 10 ³⁰ 0.98249	392.0 6.34×10 ³³ 0.98944	440.4 2.08×10 ³⁸ 0.99617	407.8 6.85×10 ³⁴ 0.99211	242.7 1.11×10 ¹⁹ 0.99936	117.1 8.67×10 ⁵ 0.99938	75.2 3.10×10 ¹ 0.99898	204.0 3.87×10 ¹⁴ 0.99312	216.0 4.98×10 ¹⁵ 0.99599
7	H K L	342.2 7.03×10 ²⁸ 0.98468	377.8 2.17×10 ³² 0.99138	425.1 4.92×10 ³⁶ 0.99728	393.3 2.10×10 ³³ 0.99381	234.4 1.91×10 ¹⁸ 0.99977	112.9 4.93×10 ⁵ 0.99962	72.4 2.65×10 ¹ 0.9953	196.7 9.07×10 ¹³ 0.99482	208.3 1.06×10 ¹⁵ 0.99726
Ś	ますい	361.0 1.76×10 ³⁰ 0.97685	397.6 5.53×10 ³³ 0.98522	446.4 1.35×10 ³⁸ 0.99356	413.6 5.45×10 ³⁴ 0.98848	245.8 1.68×10 ¹⁹ 0.99820	118.5 2.31×10 ⁶ 0.99802	76.1 1.01×10 ² 0.99810	206.9 7.38×10 ¹⁴ 0.98976	218.8 8.76×10 ¹⁵ 0.99327
10	H F L	333.5 1.36×10 ²⁸ 0.98652	357.1 2.29×10 ³⁰ 0.99227	390.1 1.72×10 ³³ 0.99789	367.7 6.98×10 ³⁰ 0.99455	209.7 1.39×10 ¹⁶ 0.99952	100.6 8.95 × 10^{4} 0.99946	64.2 1.41×10 ¹ 0.99953	182.6 8.35×10 ¹² 0.99547	190.8 4.24×10 ¹³ 0.99777
15	E K r	351.3 1.36×10 ²⁸ 0.98528	385.4 1.63×10^{31} 0.99175	429.5 8.54×10 ³⁴ 0.99696	399.8 9.85×10 ³¹ 0.99395	23 4.4 2.77×10 ¹⁷ 0.99887	112.6 4.81×10 ⁵ 0.99872	72.0 4.89 $\times 10^{1}$ 0.99854	199.3 4.38×10 ¹³ 0.99466	210.2 3.59×10 ¹⁴ 0.99691
20	н м г	358.4 2.86×10 ²⁹ 0.97400	399.5 1.86×10 ³³ 0.98393	4 56.1 1.86×10 ³⁸ 0.99370	417.9 2.83×10 ³⁴ 0.98781	255.4 9.56×10 ¹⁹ 0.99864	123.2 1.08×10^7 0.99854	79.1 4.48×10 ² 0.99864	209.6 1.18×10 ¹⁵ 0.98928	223.5 2.01 × 10 ¹⁶ 0.99351
50	H K I	301.4 8.21×10 ²³ 0.98714	331.2 4.04×10 ²⁶ 0.99316	370.9 8.26×10 ²⁹ 0.99829	344.1 1.75×10 ²⁷ 0.99524	202.8 9.30×10 ¹⁴ 1.00000	96.9 4.79×10^4 1.00000	61.5 1.50×10^{1} 0.99997	171.1 2.94×10 ¹¹ 0.99619	180.9 1.89×10 ¹² 0.99810
100	H K L	299.0 1.74×10 ²¹ 0.96660	333.9 1.27×10 ²⁴ 0.97775	381.0 5.12×10 ²⁷ 0.98906	349.2 6.91×10 ²⁴ 0.98207	$\begin{array}{c} 211.6 \\ 1.41 \times 10^{14} \\ 0.99583 \end{array}$	100.8 2.43 × 10 ⁴ 0.99538	63.8. 1.15×10 ¹ 0.99490	$ \begin{array}{r} 173.9 \\ 2.53 \times 10^{10} \\ 0.98352 \end{array} $	185.5 1.94 × 10 ¹¹ 0.98855
^a E, kJ m	ol ⁻¹ , ^b	A, s ⁻¹ . ° ° C	min ⁻¹ .							

19
E
AB
Ĥ

Kinetic parameters using nine mechanistic equations for different sample masses for decomposition of $[Cu(en)_2(H_2O)_2]C_2O_4$ (heating rate, 10°C min⁻¹)

Sample mass °		1	2	e	4	S	6	7	×	6
1.076	E a A b r	351.2 1.71×10 ²⁹ 0.99216	383.5 1.82×10 ³² 0.99648	425.2 7.96×10 ³⁵ 0.99945	397.1 1.02×10 ³³ 0.99775	$231.16.44 \times 10^{17}0.99969$	111.1 6.20×10 ⁵ 0.99973	71.2 5.18×10 ¹ 0.99971	$\begin{array}{c} 197.9\\ 1.18 \times 10^{14}\\ 0.99838\end{array}$	208.2 9.27×10 ¹⁴ 0.99949
2.487	H K L	337.4 4.62×10 ²⁷ 0.98106	369.8 4.87×10 ³⁰ 0.98845	412.2 2.33×10 ³⁴ 0.99537	383.7 2.83×10 ³¹ 0.99117	224.9 1.14×10 ¹⁷ 0.99894	108.0 2.56×10 ⁵ 0.99877	69.0 2.82×10 ¹ 0.99861	191.2 1.93×10 ¹³ 0.99216	201.7 1.54×10 ¹⁴ 0.99516
4.885	H F L	363.5 1.22×10 ³⁰ 0.98712	397.5 1.78×10 ³³ 0.99284	441.9 1.27×10 ³⁷ 0.99797	412.0 1.18×10 ³⁴ 0.99496	240.7 3.38×10^{18} 0.99993	115.9 1.43×10^{6} 0.99996	74.3 9.08×10 ¹ 0.99998	205.6 4.22×10 ¹⁴ 0.99574	216.5 3.70×10 ¹⁵ 0.99779
7.436	H K L	336.3 1.78×10 ²⁷ 0.99319	367.8 1.43×10 ³⁰ 0.99710	408.9 4.58×10^{33} 0.99919	381.3 78.35×10 ³⁰ 0.99827	222.4 3.97×10 ¹⁶ 0.99757	106.7 1.48 × 10^{5} 0.99734	68.2 1.95 × 10 ¹ 0.99727	$189.99.39 \times 10^{12}0.99860$	200.0 6.79 × 10 ¹³ 0.99923
10.00	H K L	333.5 1.36×10 ²⁸ 0.98652	357.1 2.29×10 ³⁰ 0.99227	390.1 1.72×10 ³³ 0.99789	367.7 6.98×10 ³⁰ 0.99455	209.7 1.39×10 ¹⁶ 0.99952	100.6 8.95 × 10 ⁴ 0.99946	64.2 1.41 × 10 ¹ 0.99953	182.6 8.35×10 ¹² 0.99547	190.8 4.24×10 ¹³ 0.99777
12.494	H K L	350.6 7.24×10 ²⁸ 0.99223	383.0 7.39×10 ³¹ 0.99640	425.0 3.04×10 ³⁵ 0.99874	396.7 4.09×10 ³² 0.99755	230.9 3.77×10 ¹⁷ 0.99757	111.0 4.71×10 ⁵ 0.99752	71.1 4.26×10 ¹ 0.99720	197.7 7.37×10 ¹³ 0.99806	208.0 5.65×10 ¹⁴ 0.99870
15.206	E K L	361.5 7.95×10 ²⁹ 0.96881	401.0 4.12×10 ³³ 0.97951	454.9 2.58×10 ³⁸ 0.99033	418.5 5.42×10 ³⁴ 0.98367	253.1 5.92×10 ¹⁹ 0.99659	122.1 6.12×10 ⁶ 0.99641	78.4 2.42×10 ² 0.99602	209.7 1.12×10 ¹⁵ 0.98521	223.0 1.68×10 ¹⁶ 0.98991
20.743	H K L	379.3 3.49×10 ³¹ 0.99461	419.0 1.82×10 ³⁴ 0.99812	4 73. 4 1.22×10 ⁴⁰ 0.99937	436.7 2.44×10 ³⁶ 0.99908	262.8 4.48×10 ²⁰ 0.99628	126.9 1.71×10 ⁷ 0.99615	81.6 4.86×10 ² 0.99590	218.9 7.79×10 ¹⁵ 0.99948	232.2 1.19×10 ¹⁷ 0.99942
^a E, kJ n	nol ⁻¹ .	^b A, s ⁻¹ . ^c mg								

290

Kinetic parameters for the dehydration reaction using Coats-Redfern and mechanism-based equations

Heating rate	Coats-Redfe	ern		Mampel equ	ation	
$(^{\circ}\mathrm{C}\min^{-1})$	$\frac{E}{(\text{kJ mol}^{-1})}$	$\begin{array}{c} A \\ (s^{-1}) \end{array}$	r	\overline{E} (kJ mol ⁻¹)	$\begin{array}{c} A \\ (s^{-1}) \end{array}$	r
1	267.8	1.17×10^{37}	0.9978	238.2	3.80×10^{29}	0.9938
2	260.9	2.91×10 ³⁵	0.9985	226.4	2.18×10^{27}	0.9945
5	183.1	1.73×10^{24}	0.9975	162.2	1.33×10^{18}	0.9949
10	142.7	5.21×10^{18}	0.9975	127.8	2.93×10^{13}	0.9974
15	118.6	1.56×10^{14}	0.9984	105.5	2.06×10^{9}	0.9977
20	115.3	1.96×10^{14}	0.9982	101.1	1.66×10^{9}	0.9959
50	79.9	7.59×10^{8}	0.9965	70.1	3.13×10^{4}	0.9915
100	65.1	7.20×10^{6}	0.9971	57.5	6.18×10^{2}	0.9934
Sample mass ((mg)					
1.076	292.7	9.83×10 ³⁹	0.9969	252.8	1.56×10^{31}	0.9898
2.487	169.5	2.17×10^{22}	0.9984	150.2	2.91×10^{16}	0.9980
4.885	151.7	6.60×10 ¹⁹	0.9984	136.3	3.27×10^{14}	0.9980
7.436	128.6	1.31×10^{16}	0.9979	114.5	1.06×10^{11}	0.9989
10.00	142.7	5.21×10^{18}	0.9975	127.8	2.93×10^{13}	0.9974
12.494	118.0	3.12×10^{14}	0.9982	104.7	3.33×10^{9}	0.9972
15.206	130.2	2.54×10^{16}	0.9979	115.3	1.57×10^{11}	0.9954
20.743	105.8	4.36×10^{12}	0.9984	94.9	1.02×10^{8}	0.9970

Kinetic parameters for the deamination reaction using Coats-Redfern and mechanism-based equations

Heating rate	Coats-Redfe	ern		Mampel equ	ation	
$(^{\circ}C \min^{-1})$	$\frac{E}{(\text{kJ mol}^{-1})}$	$A (s^{-1})$	r	$\overline{E} $ (kJ mol ⁻¹)	A (s ⁻¹)	r
1	246.2	8.06×10^{25}	0.9987	230.8	1.09×10 ²¹	0.9977
2	237.4	6.67×10 ²⁴	0.9985	221.5	8.50×10^{19}	0.9982
5	224.1	1.63×10^{23}	0.9982	208.3	2.26×10^{18}	0.9985
10	204.3	2.75×10^{21}	0.9968	193.1	1.22×10^{17}	0.9966
15	195.5	1.21×10^{19}	0.9986	181.9	3.59×10^{14}	0.9989
20	193.5	4.20×10^{19}	0.9987	181.3	1.66×10^{15}	0.9987
50	180.8	5.88×10^{17}	0.9940	167.3	1.88×10^{13}	0.9902
100	158.2	7.95×10^{14}	0.9904	146.3	4.25×10^{10}	0.9856
Sample mass ((mg)					
1.076	277.9	6.04×10 ²⁹	0.9979	260.9	6.08×10^{24}	0.9966
2.487	251.5	4.97×10 ²⁶	0.9984	233.3	3.62×10^{21}	0.9982
4.885	235.8	2.54×10^{24}	0.9979	220.3	4.07×10^{19}	0.9986
7.436	216.1	1.19×10^{22}	0.9889	202.5	3.21×10^{17}	0.9992
10.00	204.3	2.75×10^{21}	0.9968	193.1	1.22×10^{17}	0.9966
12.494	194.8	4.30×10^{19}	0.9987	183.5	2.05×10^{15}	0.9986
15.206	194.3	2.69×10^{19}	0.9986	182.9	1.27×10^{15}	0.9988
20.743	185.3	2.44×10^{18}	0. 99 83	173.7	1.12×10^{14}	0 .998 7

Kinetic parameters for the decomposition reaction using Coats-Redfern and mechanismbased equations

Heating rate	Coats-Redfe	ern		Mampel equ	ation	· · · · · ·
$(^{\circ}C \min^{-1})$	$\frac{E}{(kJ mol^{-1})}$	A (s ⁻¹)	r	$\frac{E}{(\text{kJ mol}^{-1})}$	A (s ⁻¹)	r
1	247.1	3.28×10^{22}	0.9997	242.7	1.11×10 ¹⁹	0.9993
2	238.6	5.41×10 ²¹	0.9999	234.4	1.91×10^{18}	0.9997
5	250.3	4.87×10^{22}	0.9988	245.8	1.68×10^{19}	0.9982
10	212.9	3.05×10^{19}	0.9994	209.7	1.39×10^{16}	0.9995
15	238.3	6.71×10^{20}	0.9987	234.4	2.77×10^{17}	0.9988
20	260.6	3.20×10^{23}	0.9990	255.4	$9.56 imes 10^{19}$	0.9986
50	206.3	2.09×10^{18}	0.9999	202.8	9.30×10 ¹⁴	1.0000
100	215.9	3.41×10^{17}	0.9965	211.6	1.41×10^{14}	0.9958
Sample mass (mg)					
1.076	234.8	1.55×10^{21}	0.9995	231.1	6.44×10^{17}	0.9996
2.487	228.6	2.78×10^{20}	0.9992	224.9	1.14×10^{17}	0.9989
4.885	244.6	8.49×10 ²¹	1.0000	240.7	3.38×10^{18}	0.9999
7.436	226.0	9.23×10 ¹⁹	0.9970	222.4	3.97×10^{16}	0.9975
10.00	212.9	3.05×10^{19}	0.9994	209.7	1.39×10^{16}	0.9995
12.494	234.7	9.11×10 ²⁰	0.9972	230.9	3.77×10^{17}	0.9975
15.206	258.1	1.91×10^{23}	0.9974	253.1	5.92×10^{19}	0.9965
20.743	267.8	1.43×10 ²⁴	0.9954	262.8	4.48×10 ²⁰	0.9962

TABLE 23

The curve-fit constants for the dehydration and deamination reactions using the Mampel equation

	a	b	с	F	R^2
Dehydration	n	- ····	·		
Sample m	ass				
Ē	96.82	164.06	_	162.19	0.9664
log A	8.55	23.89	-	133.60	0.9570
Heating rate	e				
E	93.62	174.81	-	23.33	0.7955
$\log A$	7.99	25.91	-	24.25	0.8017
Deamination	n				
Sample mas	s				
E	263.15	- 9.7435	0.2684	89.74	0.9729
log A	25.01	- 1.1656	0.0314	80.24	0.9698
Heating rate	•				
Ε	219.59	-1.8751	0.0116	19.80	0.8879
log A	19.75	-0.2304	0.0014	19.39	0.8858

The reliability of the fits was evaluated by the F-test and it was found that all correlations were above the 99% confidence level. The values of the empirical constants along with the corresponding Fisher constants for the dehydration and deamination processes using the mechanistic equation (Mampel) are given in Table 23.

Dependence of reaction mode

As reported earlier [14], all three thermal decomposition stages of diaquabis(ethylenediamine)copper(II) oxalate follow the same reaction mechanism described by the Mampel equation. For all three stages the reaction mechanism is not influenced by the variation in heating rate and sample mass. However, the values of kinetic parameters calculated using the four non-mechanistic and mechanistic-based equations show a different trend. For the dehydration process, they decrease systematically with increase in either heating rate or sample mass, the trend being represented by a rectangular hyperbolic equation. The kinetic parameters for the deamination process also show a systematic decrease; however, the dependence is best depicted by a different equation, a parabola. For the final decomposition of the mono(amine) complex to CuO, the kinetic parameters do not show any systematic variation. Thus it can be seen that the mode of dependence of the kinetic parameters on procedural factors is different for the three types of reaction.

ACKNOWLEDGEMENTS

We thank the authorities of Vikram Sarabhai Space Centre for providing the instrumental facilities. The help of Dr. K. Krishnan and Mr. G. Viswanathan Asari with the TG instrumental work is gratefully appreciated. One of the authors (S.M.) is thankful to the Council of Scientific and Industrial Research, New Delhi, for the award of a Senior Research Fellowship.

REFERENCES

- 1 W.W. Wendlandt, Thermal Analysis, 3rd edn., Wiley, New York, 1986, p. 12.
- 2 C. Duval, Anal. Chim. Acta, 31 (1964) 301.
- 3 E.L. Simmons and W.W. Wendlandt, Thermochim. Acta, 2 (1971) 465.
- 4 L. Reich, S.A. Patel and S.S. Stivala, Thermochim. Acta, 138 (1989) 147.
- 5 J.Y. Armand and J.M. Vergnaud, Thermochim. Acta, 131 (1988) 15.
- 6 E. Urbanovici and E. Segal, Thermochim. Acta, 147 (1989) 33.
- 7 K. Miyokawa and I. Masuda, Thermochim. Acta, 86 (1985) 113.
- 8 A. Romero, E. Garcia and C. Beneitez, Thermochim. Acta, 143 (1989) 339.
- 9 K.N. Ninan and C.G.R. Nair, Thermochim. Acta, 23 (1978) 161.
- 10 K.N. Ninan and C.G.R. Nair, Thermochim. Acta, 30 (1979) 25.

- 11 K. Krishnan, K.N. Ninan and P.M. Madhusudanan, Thermochim. Acta, 89 (1985) 295.
- 12 K. Krishnan, K.N. Ninan and P.M. Madhusudanan, Thermohcim. Acta, 90 (1985) 229.
- 13 J.M. Haschke and W.W. Wendlandt, Anal. Chim. Acta, 32 (1965) 386.
- 14 A. Reicher and P. Vallet, Bull. Soc. Chim. Fr., 148 (1953).
- 15 E.L. Simmons and A.E. Newkirk, Talanta, 11 (1964) 549.
- 16 W.W. Wendlandt, Thermal Analysis, 3rd edn. Wiley, New York, 1986, p. 34.
- 17 C.G.R. Nair, S. Mathew and K.N. Ninan, Thermochim. Acta, 150 (1989) 63.
- 18 S. Mathew, C.G.R. Nair and K.N. Ninan, Thermochim. Acta, 144 (1989) 33.
- 19 C. Mack, Essentials of Statistics for Scientists and Technologists, Plenum, New York, 1967, pp. 106-115.
- 20 W.R. Dillon and M. Goldstein, Multivariate Analysis—Methods and Applications, Wiley, New York, 1984.
- 21 V. Satava, Thermochim. Acta, 2 (1971) 423.