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Abstract 

After reviewing present methods of evaluating E, the activation energy, and A, the 
pre-exponential constant, and pointing out some of the inherent weaknesses of the method, a 
technique is outlined whereby a DTG and/or TG curve may be produced for direct 
comparison with experimental curves by assuming values for A and E and using finite 
difference techniques to produce such a curve. 

INTRODUCTION 

In isothermal studies of solid state decompositions, the rate constant k is 
usually represented by an equation of the form 

g(a) = kt 0) 

where g( cy) is some function of the fraction reacted at time t at some 
constant temperature T (in degrees absolute). The function g( cr) can take 
different forms depending on the reaction occurring, and such forms have 
been summarized by Keattch and Dollimore [l] and by Brown [2]. The value 
of k at different temperatures for the same reaction is generally assumed to 
be governed by the Arrhenius equation 

k=Aexp(-E/RT) (2) 

where E is the activation energy associated with the process, R is the gas 
constant and A is the pre-exponential constant. In using rising temperature 
kinetic evaluations, the function g( (r) is usually not known, and one way of 
designating g( cr) is to perform calculations of k using all available functions 
g(a) and determine which gives the best Arrhenius plot. This is a tediobs 
procedure and necessitates computer programming. Alternatively, one may 
run a single isothermal experiment and determine the form of g(a) by the 
method of Jones et al. [3] or Sharp et al. [4]. However, there is no guarantee 
that the kinetics of isothermal decomposition follow the same g(a) as in 
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rising temperature experiments. In deducing the kinetic evaluation of rising 
temperature data, one further difficulty is the evaluation of the integral 

J 
Te-&‘RTdT 

0 

which arises if the integral equation (eqn. (1)) is used in the calculations. In 
the method described here, a computer program is outlined which allows a 
TG curve (or a-T curve) to be reconstructed and compared with experimen- 
tal data. Furthermore, the method is based not on the integral equation 
(eqn. (1)) but on the differential form of the equation. 

THEORY AND CALCULATION 

If eqn. (1) is differentiated 

(3) 

where f(a) is the reciprocal of the differentiation of g(a) with respect to (Y 
and da/d t is the differentiation of (Y with respect to time. 

In the rising temperature experiments the time is not explicit; temperature 
is used as one axis, so it is necessary to know the relationship of T with t, 

and this is usually of the form 

T=T,+@ (4) 

where p is the rate of heating (in degrees per second) and To is the starting 
temperature; t is the time of heating. By differentiation 

dT 
z=B (5) 

It is possible to write 

da da dT 
dt= 

- 
dT’ dt (6) 

or 

da dcr 
dt=dTT.B (7) 

Using eqn. (7) in eqn. (3) 

‘“+$) ’ b = k 
a 

or 

da A exp( - E/RT) .f( a) 
dT= P 

(8) 

(9) 
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Taking logarithms gives 

In k = In(da/dT) - In f(a) + ln /3 00) 

giving the relationship between the rising temperature and k. The final term 
is a constant, da/dT is the slope of the plot of a against T, and f(a) can be 
calculated at each point at which da/dT is measured by using that particu- 
lar value of a. The values of A and E can then be calculated by plotting 
In k against l/T using the logarithmic form of eqn. (2). 

FINITE DIFFERENCE METHODS 

Although most of the differential equations discussed cannot be solved by 
standard mathematical techniques, very close approximations to such solu- 
tions can be obtained using finite difference methods. One of the present 
authors (F.W.W.) has used the method successfully to predict the effect of 
heat transfer on a typical DTA curve [5]. 

The method consists essentially of taking very small increments in the 
variable, in this case time, and calculating the fractional amount reacted in 
that increment of time. Initially a is given the value zero, or a very small 
value, should zero make the solving of the reaction equation impossible, and 
a suitably low temperature is chosen at which the reaction rate is negligible. 
The time is incremented and the value of the fractional amount reacted is 
calculated. Time is again incremented, adjustments being made to the 
temperature, where T = To + Pt. 

The previous value of da is added to a and this is used as the new value 
of a for the next calculation. The process is repeated until a equals or 
approaches unity. The process is one of iteration, and would be very time 
consuming if carried out manually. It is an ideal situation for a computer 
and programs have been developed to accommodate most of the suggested 
reaction equations. 

There are, however, a number of points which need careful consideration 
when using the technique. The time step chosen must be as small as possible. 
Large time steps can lead to distorted and erroneous results. Unfortunately, 
the smaller the time step, the slower is the completion of the program. 
Hence values of the time step must be chosen as a compromise. A compari- 
son of the results using two different time steps, one an order of magnitude 
greater than the other, will ascertain whether a given choice is suitable. If the 
results are widely different then a comparison between the lower value and 
another an order of magnitude less should be made. The process is repeated 
until there are no significant differences between the results, using both time 
steps. It is then safe to use the higher value. 

Errors can arise if the chosen starting temperature is too high. This will 
distort the whole curve, but the error can be detected by a close examination 
of the initial part of the da/dT vs. temperature curve (the DTG curve). If 



80 

TABLE 1 

Values of (I: at (da/dT),, for different equations at different heating rates (/3) 

Equation 

1. A, 
A2 

A2 

2. A, 
A3 

A, 
3. A, 
4. B, 
5. D, 
6. D2 
7. Ds 
8. D4 
9. E, 

10. Ft 
FI 

11. F2 
12. F3 
13. Pt 
14. R, 
15. R, 

[ - ln( 1 - (u)]‘/~ 

[ - ln( 1 - CY)]‘/~ 

[ - ln(1 - ay 
Za’(l - a)1 

(l-a)hl(l-a)+a 
[l - (1 - a)1’3]2 
(1-2a/3)-(1-c~)~‘~ 
lna 
- ln( 1 - a) 

l/(1 - a) 
[l/(1 - 412 
cn (n =l) 
1 - (1 - a)“2 
1 - (1 - aps 

P a at (da/dT),, 

5 0.6247 
10 0.6245 
15 0.6250 
5 0.6295 

10 0.6306 
15 0.6312 
10 0.6340 a 
10 0.5422 
10 1.0000 
10 0.8151 
10 0.6762 
10 0.7541 
10 1.0000 
10 0.6149 
15 0.6142 
10 0.4783 
10 0.3963 
10 1.0000 
10 0.7384 
10 0.6903 

a See ref. 6. 

the initial part of the curve has a slope greater than most of the early part of 
the curve, this indicates that the starting temperature chosen was too high. 
The initial part of the curve should increase in slope gradually. 

THE COMPUTER PROGRAM 

The program prints out a list of temperature ( O C), a (fraction reacted) 
and (da/dt)/P i.e. da/dT (T being temperature). If da/dt is required 
then this can easily be accomplished. The graph-drawing program prints out 
the maximum value of da/dt or da/dT. The curves can be normalized by 
dividing the values of da/dt (or da/dT) by (da/dr),, (or (da/dT),,). 

A brief description of the program is as follows. Equation (9) is rewritten 
in the form 

da = A exp( -E/RT) .f( a) dt (11) 

The required function f(a) is used and the iteration process is commenced 
by giving E, R and T initial values. a is set at zero, unless by so doing the 
equation will not operate, when a small value, say 0.00001, is used. Using 
these values the value of da is computed. This value of da is added to that 
of a and used in the next computation in f(a). Temperature (absolute) is 
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upgraded by adding /3 times dt to the T used in the previous calculation. 
Again da is computed. This value is again added to a to make the value of 
a to be used in the next calculation. Again T is upgraded as before and a 
new value of da is calculated. The process is repeated until the temperature 
reaches the final temperature. The results are stored on a disc, usually at 
every 2°C step, although at longer intervals when there is little reaction 
occurring. The data stored is a, da/dT (that is, the computed value of da 
divided by dT). The process can be repeated for any given values of A and 
E, for as many different functions f(a) as required to be tested. In drawing 
the graphs it may be better to normalize them for comparison purposes. This 
can be achieved by dividing each value of da/dT by (da/dT),, so that 
the height of the y axis is unity. As this value of (da/dT),, is given in the 
print-out it is an easy matter to estimate other values on the graph. The 
program is constantly updated, so requests for the print-out should be made 
to the authors in order to obtain the latest version. An appendix gives the 
current status of this program. 

RESULTS 

Some early results using the 15 equations suggested by Keattch and 
Dollimore [l] and those suggested by Brown [2] have indicated (although 
further work is necessary to confirm this) that the value of a at which the 
maximum value of (da/dT) occurs is dependent on the reaction equation 
only, being sensibly independent of heating rate, as Table 1 would suggest. 

Figure 1 shows the correlation between TG plot and the DTG plot. In the 
program both plots are presented superimposed. The diagram is schematic 

a 
(b) 

+Widtb 

Yy LOT HiT 

Fig. 1. Schematic plots of TG and DTG curves showing data which can be ascertained from 
computer curves. Ti and T, are the initial and final temperatures respectively. HIT and LoT 
are the high and low temperature ends of the halfwidtb respectively. Tp is the peak 
temperature of a DTG curve. 



82 

only and the footnote indicates the parameters which can be reported from 
the computer program. 

APPENDIX: LISTINGS OF COMPUTER PROGRAMS 

10 

:: 
40 

z 

;: 
90 
100 
110 
120 
130 
140 
1sO 
l&l 
170 
180 
190 

:z 
220 
230 

%I 
260 
270 
280 
2w 

z 
320 
330 
340 

z 
370 

z: 
400 

410 
420 
430 

z 
460 

470 
480 
490 
500 
510 
520 
530 

z 
560 
570 
580 

z 
610 

620 
630 

LPRMT”Pmgnuns to Re-constn~t Rising Tcmpiaature TG & DTG curves ” 
LPRlNT * tiom Reaction Equwionr and A and E Values” 
LPRmT ” (C)by F.W.Wilbumhe 1989 ” 
LPRINT 
INPUT “Name for File Plcase”;N$ 
LPIUNT “File for Results: “;NS 

OPEN NS FGR OUTPUT AS #l 
INPUT “VALUE of A please(Recip Sex)?‘% 
INPUT “VALUE of E pkasecjouleshnole)?“E 
INPUT “Starting Tempmmtre(&g C.) please?“;TS 
INPUT “Final Tempemttre(deg C.) please?“;TF 
INPUT “Heating Rate @q/mitt) “:BETA 
~~~“:l~“,“;E;““;TS;“,“;TF 
_ _. - _ _ 

TEMP =TS + 273 
CL5 
PRI NT ” Functions Available” 
PRINT “l.Pl f(x) = xqlhl) 
PRINT “2.El f(X) = In x” 
PRlii “3.A2 f$j = [-ln(l-X)]“O.Y 
PRINT “4.A3 f(X) = (-ln(l-x)1”0.33” 
PRINT “.%.A4 f(X) = [-ln(l-X)]“0.25” 
PRINT “6.Bl f(X) = In[x/(l-x)]” 
PRINT “7.R2 f(x) = I-(1.zQ’O.5” 
PRINT “8.R3 f(x) = 1.(I-xfl.33” 
PRINT “9.DI f(x) = ~“2” 
PRINT “10. D2 f(x) = (1.x)ln(l-x) +x ” 
PRINT “11. D3 f(x) = [l-(l-x)‘O.33]“2” 
PRINT “12. D4 f(x) = (1-2x/3) - (l-x)“2./3” 
PRN “13. Fl f(x) = -In(l-x) 
PRINT “14. F2 f(X) = 1/(1-x) ” 

PUT "Nttmbm of Equation Required? “;NUM 

EN INPUT ‘“Value of n Pleax “:N :LPRINT “N = “;N 
tiott se1ccted _ “. 
I-G 410,420,4jo, 440,450,460,470,480,490.500,.510.520, 

LFwNT ” R2 f(X) = 1-(1-x)%5 “:GGTO 5M) 
LPRINT ” R3 f(x) = I-(l-x)‘%33 “GOT0 5M) 
LPRINT ” Dl f(x) = ~“2 “:GOTO 560 
LF’RINT ” D2 f(x) = (1-x)ln(l-x) + x “:GOTG 560 
LPRINT ” D3 f(x) = [l-(l-x)“o.33]“2 “GOT0 560 
LJ’RINT ” D4 f(x) = (I-2ti).(l-x)“2/3 “:GOTG 560 
LPRINT ” Fl f(x) = -In(l-x) “:GOTO 560 
LPRINT ” F2 f(x) = 1/(1-x) “:GGTG 560 
LPRINT ” F3 f(x) =[ l/( l-x)]“2 ” 
X=.oooOl:DXMAX=O 
DT =.l:BETA=BETA/M):R = 8.314:TS =TS + 273:TF=TF+273 
ON NUM GOSUB 770,790.810, 830,850. 870,890.910.930,950.970, 1000, 
1020, 1040,1060 
DX = A*PI*EXP(-E/(RITS))‘DT 
X = X + DX: IF X => 9999 THEN X=.9999:DX-O 
IF DX/(DT*BETA) > DXMAX AND X > .05 THEN DXMAX = 
DX/(DFBETA): XMAX = x:TMAX = TS -273 
lFX>.lANDX<.9999THEN SPAN=2ELSE SPAN=10 
lF TS>lEhiP THEN PRINT’X= “;X;TAB@);“TS= ‘Y-S-273;TAB(50) 
‘DX/DT= ‘:DX/(D~BEfA):TEMF’=TEMPtSPAN GOSUB 1080 
TS =TS + BETA’DT 
tFTS.Zl’F THEN GOTG 580 
U= LEN(NS):U=U-4 
PS= MID$(NS.S,U) 
Q =-NAME? + P$ 
OPEN QS FOR 0UTPj-C AS #2 
LUEfl&DXw , ;TMAx 

LPRINT “Max Rate occuls at a value of x =“;XMAX:” and at “:ThiAXr deg C.” 
LPRINT “Max Rate is “;DXMAX 

%? “CURVE” 
END 
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790 Pl=X 
8cmREnJRN 
m& Pi-X)‘(-L~(i-X)~.5 

;3 ~-~*(~L~l-x))A(~) 

ftE Pl=4~-x)*(*Lcm(l-a)~.75 

;3: EbX) 

890 Pl = 2’(1-Xy,.J 

rz teg-X)“(2/3) 
920 BETURN 
92 POX) 

92 Pl=&gJG(“x)) 

970 Al=(I-X)“(-U3):Bl=(l-X)“(l4):C1= 

E 
la00 
1010 

:tz 

:z 

1s 

t% 
1110 
1120 
1130 
1140 
US0 

::t 
1180 
1190 

~&k&l’Cl) 

P&lwow3).1) 

Pl el-X 

al-x” 

LPI~~‘“X= “;x,TAB(2S):‘TS= “;Ts-nlTAB(so)““;D~~R~A) 
Pzz, TS273:“.“;X;“.“;DX/(DT+BFvTA) 

LPRINT CI3sq27):‘x”;~~lk 
FoRJ=lTO4OSORI=1TOl2 
ytEA& RURINT cwRF(R): 

iiiE$E 
%i 4 1026.58,103~31.231.10358~6,10.4 
RBTe’ 

10 
20 

% 
so 

; 
80 
90 
loo 
110 
120 
130 
140 

:E 
170 
180 
190 

%z 
220 

:; 

% 
280 

2 

% 

z 

% 

REMRogramto~wClwcJFromDatainaEie(Curvexl) 
lNPUT “Filenam Please? = “.NS 
OPENN$FORINFUTAS#i 
INPUT #l~$,~~,G$~$~~ 
~Y~~~ “Vatut of A = “;D;” RwIp. Sss ” 
E=VAl_@$):LPRINT “Vata of E = “;E;” Jcmke&wk” 
TA=VAL(F$&FRlNf “Valix of Stan Temp = “;TA;“deg C. ” 
‘fF=V~GS):lPRIW “Value of FmrJ Tcnq, = “;TF$kg C. ” 
H=VAL@LS):I.PRINT “Value of Heating Rate,- “;I-k “deghnin ” 
J=VAL(J$):U’RINT “Number of Equation Ctmsm “3 
u = LEN(NmJdJ-4 
R = hmwN%5B) 
QS=“NAME”+P$ 
OPENQ$FORINPUTAS#3 
~B~~~~:K~V~):~V~ 

D = l&F =lO:G = 1o:DT =.l 

E-&N1 
LINE (10,1)_(10,160) 
LINE (10.160)-(299,lM)) 
LOCATB 1.1:PRINT “D” 
LOCATE 10 1 mINT ‘X” 
LOCAnz20’1tPRlm”1” 
R=(TF-TA)/iOOcP=36!RS=l:N=l:TSl=TA 
LOCATE22,1:PIUNTTA 
~l=~l+l~~TSl>~~~ 310 
S=pN 
LGc!ATE22+%PRIwrTsl 
N=N+l:GoTo 270 
LINE -(O,O),,o),,.&HO 
IF EOF (1) ‘IT-IBN CU)SE:~ 400 
INPUT #1”4At,BS,cs 
TS = VAL (A$)X = VAL (BSYDX = VAL 0) 
LINB @,Fj - ((CrS-TA)W9)&TF-TA).WOW),2 
LINE @,G) - ((Ts=rA)*2~~-TA)),X*l~~~ 
LINE (crs-TA)~~/~-TA),~X*laOtflu) - ((cfs-TA)*299Y(TF- 
TA),I6O*X),,&IO 

;g ~~~~~~-TA~F = 160*X : G = @X*l6fJ~ 

400 LOCATE 5.1:PRINT 
410 END 

:l-Bl 
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._ 
: 
70 
80 
90 

:z 
120 
130 
140 
150 
160 
170 
IRO 

% 
210 
220 
230 
240 

220.230.240, 

‘bringrDXMMtoihisPmSmm” 
‘-- ?G’UTAS#3 

I:K=vAL&s):L=vAL&S) 
JFEOF(3)TliEN MSEW3 
D-O:F=OG=O:DT=.l 
cL.s 

~%F(l)TML0SE:GCIKJ2% 
JNFWT rlaBS.cS 
;N’ w-&)xX= VAL (BS):DX = VAL (c$) 

= 
IFDX>mANDTS <LTHEtiN=l:Wl~T%l 
lFDX<KRANDTS>L THENGoT 
Gom210 
w2.4Srm “HiTS= “;wz:cLoSE 
y&m-r “Halfwi,jch = “:w2-WI:” with Rak 81 

SKIN-r 

“;L 

‘1 .oTS=’ “:Wl:GORJ 210 
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