SOME PROBLEMS CONCERNING THE TEMPERATURE INTEGRAL IN NON-ISOTHERMAL KINETICS

Part II. A new criterion to compare the accuracy of various approximations. A new third order rational approximation

E. URBANOVICI

Research Institute for Electrotechnics, Sfintu Gheorghe Branch, Str. Jozsef Attila Nr. 4 Sfintu Gheorghe, Județul Covasna (Romania)

E. SEGAL

Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bulevardul Republicii 13, Bucharest (Romania)

(Received 25 June 1990)

ABSTRACT

Following their earlier ideas concerning the temperature integral, in order to obtain correct approximations for the temperature integral the authors present a general criterion for the comparison of various approximations as well as a new third order approximation.

INTRODUCTION

In a previous paper [1] the temperature integral

$$I(T, r) = \int_0^T y^r \, \mathrm{e}^{-E/R_y} \, \mathrm{d} \, y \tag{1}$$

was approximated through the relationship

$$\int_{0}^{T} y^{r} e^{-E/Ry} dy = \left(\frac{E}{R}\right)^{r+1} \frac{e^{-x}}{x^{r+2}} Q_{r}(x)$$
(2)

where

$$x = \frac{E}{RT}$$
(3)

The function $Q_r(x)$ is an approximate solution of the differential equation

$$Q'_{r}(x) - \left(1 + \frac{r+2}{x}\right)Q_{r}(x) + 1 = 0$$
(4)

where $Q'_r(x)$ indicates $dQ_r(x)/dx$. As differential equation (4) does not admit exact solutions a method to obtain approximate solutions was presented in Ref. 1.

0040-6031/91/\$03.50 © 1991 – Elsevier Science Publishers B.V.

A NEW CRITERION TO COMPARE THE ACCURACY OF VARIOUS APPROXIMA-TIONS

Let us consider an approximate solution of eqn. (4), $Q_r(x, p)$, where p is a set of constant or variable parameters [1]. Introducing $Q_r(x, p)$ into eqn. (4) we obtain

$$Q'_{r}(x, p) - \left(1 + \frac{r+2}{x}\right)Q_{r}(x, p) + 1 \equiv \rho_{r}(x, p)$$
(5)

where the function $\rho_r(x, p)$ appears due to the approximate character of $Q_r(x, p)$.

In order to obtain a relationship between $\rho_r(x, p)$ and the error $\epsilon(x)$ in the temperature integral corresponding to the use of the approximate function $Q_r(x, p)$ in relationship (2), we shall express $\epsilon(x)$ as follows

$$\epsilon(x) = \left(\frac{E}{R}\right)^{r+1} \frac{e^{-x}}{x^{r+2}} Q_r(x, p) - \int_0^T y^r e^{-E/Ry} dy$$
(6)

From eqn. (6), taking the derivative with respect to x, one obtains

$$\frac{\mathrm{d}\epsilon(x)}{\mathrm{d}x} = \left(\frac{E}{R}\right)^{r+1} \frac{\mathrm{e}^{-x}}{x^{r+2}} \left[Q_r'(x, p) - \left(1 + \frac{r+2}{x}\right) Q_r(x, p) + 1 \right]$$
(7)

or, taking into account eqn. (5)

$$\frac{\mathrm{d}\epsilon(x)}{\mathrm{d}x} = \left(\frac{E}{R}\right)^{r+1} \frac{\mathrm{e}^{-x}}{x^{r+2}} \rho_r(x, p) \tag{8}$$

From eqn. (8), through integration between x and ∞ and taking into account that

$$\boldsymbol{\epsilon}(\boldsymbol{\infty}) = \boldsymbol{0} \tag{9}$$

we get

$$\int_{x}^{\infty} d\epsilon(z) = \left(\frac{E}{R}\right)^{r+1} \int_{x}^{\infty} \frac{e^{-z}}{z^{r+2}} \rho_r(z, p) dz$$
(10)

which, after performing the detailed calculations, becomes

$$\epsilon(x) = -\left(\frac{E}{R}\right)^{r+1} \int_{x}^{\infty} \frac{e^{-z}}{z^{r+2}} \rho_r(z, p) dz$$
(11)

which is the desired relationship between $\epsilon(x)$ and $\rho_r(x, p)$.

We shall use a theorem concerning the sign of the integral according to which, if the integral retains the sign in the interval of integration, the integral is a number of the same sign as the function [2]. Taking into account this theorem and the obvious inequality

$$\frac{e^{-x}}{x^{r+2}} > 0 \text{ for } x > 0$$
(12)

it is easy to observe that

$$\epsilon(x) < 0 \text{ if } \rho_r(x, p) > 0 \tag{13}$$

and

$$\epsilon(x) > 0 \text{ if } \rho_r(x, p) < 0 \tag{14}$$

The idea valid for most of the approximations that $\rho_r(x, p)$ does not change its sign was accepted. The cases corresponding to the change of sign will be discussed in a future paper.

For a given value of x, the lower the value of $|\rho_r(x, p)|$, the lower is the value of $|\epsilon(x)|$; thus in order to compare the approximations it is enough to compare the values of the corresponding $\rho_r(x, p)$ without having to evaluate numerically the integral in eqn. (11).

Table 1 lists some approximations, for r = 0, taken from [1] and the corresponding functions $\rho(x, p)$ for various values of x.

The comparison between the data given in Table 1 and those listed in Table 3 of Ref. 1 shows that the sign inequalities (13) and (14) are fulfilled and that the values $\rho(x, p)$ can be used in order to compare various approximations of the temperature integral.

The relative error of the temperature integral

$$\epsilon_{\mathfrak{F}}(x) = \frac{\epsilon(x)}{\int_0^T y' \,\mathrm{e}^{-E/Ry} \,\mathrm{d}y} \times 100 \tag{15}$$

taking into account that

$$\int_{0}^{T} y' \,\mathrm{e}^{-E/Ry} \,\mathrm{d}\, y = \left(\frac{E}{R}\right)^{r+1} \frac{\mathrm{e}^{-x}}{x^{r+2}} Q_{r}(x, p) \tag{16}$$

and relationship (11), turns into

$$\epsilon_{\%}(x) = -\frac{\int_{x}^{\infty} \frac{e^{-z}}{z^{r+2}} \rho_r(z, p) \, dz}{\frac{e^{-x}}{x^{r+2}} Q_r(x, p)} \times 100$$
(17)

The approximate evaluation of the integral from eqn. (17) still remains an open problem.

ON A NEW THIRD ORDER RATIONAL APPROXIMATION

The second order rational approximation valid in principle for any r

$$Q_r(x) \approx \frac{x^2 + x(4+r)}{x^2 + x(6+2r) + (r+3)(r+2)}$$
(18)

was suggested in our earlier paper [1].

	01 (<i>x</i> , <i>p</i>) 101	several of the us	uai approvid							
Appro- xima-	$- Q_0(x, p)$	$\rho_0(x, p)$	<i>x</i> = 5	x = 10	x = 20	x = 30	x = 40 x	= 50 x	= 75	κ = 100
tion										
1	1	- <mark>-</mark> 2	-4.0×10^{-1}	-2.0×10^{-1}	-1.0×10^{-1}	-6.7×10^{-2}	-5.0×10^{-2} -	-4.0×10^{-2} -	-2.7×10^{-2}	-2.0×10^{-2}
5	$\frac{x-2}{x}$	x 2 x 2	2.4×10^{-1}	6.0×10^{-2}	1.5×10^{-2}	6.7×10^{-3}	3.8×10^{-3}	2.4×10^{-3}	1.1×10^{-3}	6.0×10^{-4}
en	$\frac{x}{x+2}$	$\frac{2}{(x+2)^2}$	4.1×10^{-2}	1.4×10^{-2}	4.1×10^{-3}	2.0×10^{-3}	1.1×10^{-3}	7.4×10^{-4}	3.4×10^{-4}	1.9×10^{-4}
4	$\frac{x+1}{x+3}$	$\frac{-6}{x(x+3)^2}$	-1.9×10^{-2}	-3.6×10^{-3}	-5.7×10^{-4}	-1.8×10^{-4}	-8.1×10^{-5}	- 4 .3 × 10 ⁻⁵ -	-1.3×10^{-5}	-5.7×10^{-6}
5	$\frac{x^2+4x}{x^2+6x+6}$	$\frac{12}{\left(x^2+6x+6\right)^2}$	3.2×10^{-3}	4.4×10^{-4}	4.3×10^{-5}	1.0×10^{-5}	3.5×10^{-6}	1.5×10^{-6}	3.2×10^{-7}	1.1×10^{-7}

Values of (x, y) for several of the usual approximations taken from [1]

TABLE 1

$$Q_r(x, p) \equiv Q_r[x, b(x), c_i] = \frac{x^2 + ax + b(x)}{x^2 + cx + d}$$
(19)

obtained from eqn. (18) through generalisation.

Using the procedure suggested in Ref. 1 we have

$$i = 3$$
 (20)

$$c_1 = a; \ c_2 = c; \ c_3 = d$$
 (21)

The term $b_0(x, a, c, d)$ will be sought by solving the equation [1]

$$\frac{\partial Q_r[x, b_0(x, a, c, d), a, c, d]}{\partial x} = \left(1 + \frac{r+2}{x}\right) Q_r[x, b_0(x, a, c, d), a, c, d] + 1 = 0$$
(22)

Substituting eqn. (19) in eqn. (22) we get

$$\frac{(2x+a)(x^2+cx+d) - (2x+c)[x^2+ax+b_0(x, a, c, d)]}{(x^2+cx+d)^2} - \left(1+\frac{r+2}{x}\right)\frac{[x^2+ax+b_0(x, a, c, d)]}{x^2+cx+d} + 1 = 0$$
(23)

an equation whose solution with respect to $b_0(x, a, c, d)$ is

$$b_0(x, a, c, d) = \frac{(x^2 + cx + d)[x^3 + x^2(c+2) + x(a+d)]}{x^3 + x^2(c+4+r) + x[c(r+3)+d] + (r+2)d}$$
$$-x^2 - ax$$
(24)

Introducing this result into eqn. (19) we obtain the desired approximation

$$Q_r(x, p) = \frac{x^3 + x^2(c+2) + x(a+d)}{x^3 + x^2(c+4+r) + x[c(r+3)+d] + (r+2)d}$$
(25)

Taking into account the fact that relationship (19) was obtained from relationship (18) through generalisation, we shall introduce into eqn. (25) the following values for a, c and d

$$a = 4 + r \tag{26}$$

$$c = 6 + 2r \tag{27}$$

$$d = (r+3)(r+2)$$
(28)

In such a way we obtain the following final form of the third order approximation

$$Q_r(x)\frac{x^3 + x^2(8+2r) + x(r^2+6r+10)}{x^3 + x^2(10+3r) + x(r+3)(8+3r) + (r+2)^2(r+3)}$$
(29)

	וכומווער	and approximition of the second second								
No.	-	$Q_r(x)$	x = 5	x = 10	x = 20	x = 30	<i>x</i> = 40	x = 50	<i>x</i> = 75	x = 100
_	0	$O(x) \equiv \frac{x^3 + 8x^2 + 10x}{2}$	2.7×10^{-2}	3.3×10^{-3}	2.4×10^{-4}	6.8×10^{-5}	≈ 10 ⁻⁵	≈10 ⁻⁵	≈ 10 ⁻⁵	≈ 10 ⁻⁵
ı	,	z^{-1} , $x^{3} + 10x^{2} + 24x + 12$								
2	1/2	$Q_{1/2} \cong \frac{x^2 + 9x^2 + 13.23x}{\sqrt{3} \pm 115\sqrt{2} \pm 33.75x \pm 71.875}$	2.7×10^{-2}	3.9×10^{-3}	3.0×10^{-4}	7.5×10^{-5}	≈ 10 ⁻⁵	≈ 10 ⁻⁵	≈ 10 ⁻⁵	≈ 10 ⁻⁵
		x + 11.0x + 00.20x + 21.000				ı		·		
e	1	$Q_1(x) \cong \frac{x + 10x + 1/x}{x^3 + 13x^2 + 44x + 36}$	2.6×10^{-2}	4.2×10^{-4}	3.6×10^{-4}	9.1×10^{-5}	≈10 ⁻⁰	≈ 10 ^{- c}	≈10-2	≈10⁻┘
		$x^{3} + 11x^{2} + 212x$,			y .	y 0	<u>y</u> – o ,	
4	3/2	$Q_{3/2} \cong \frac{x}{x^3 + 14} \frac{x}{5x^2 + 56.25x + 55.125}$	2.5×10^{-2}	4.5×10^{-3}	4.5×10^{-4}	1.1×10^{-4}	≈ 10⁻ ′	≈10⁻┘	≈ 10 - ′	≈ 10
		$x^{3} + 10 x^{2} + 26x$	•	ſ				9 0 	5-0-5	
ŝ	7	$Q_2(x) \equiv \frac{x}{x^3 + 16x^2 + 70x + 80}$	2.2×10^{-2}	4.7×10^{-3}	5.0×10^{-4}	1.2×10^{-2}	≈10_0	≈ 10 ×	≈ 10 °	≈ 10 ×

The relative errors of the approximations $Q_r(x)$ given by formula (29)

TABLE 2

Table 2 lists the relative errors corresponding to the approximation (29) for various values of x and r. The reference values of $Q_r(x)$, with which the values of $Q_r(x)$ given by eqn. (29) are compared, have been taken from [1]. The expression " $\approx 10^{-5}$ " means that an accuracy within 2×10^{-5} % is considered as significant [1]. From an inspection of Table 2 one can conclude that the third order approximation given by eqn. (29) leads to very good results. For r = 1/2, 1, 3/2 and 2, the above mentioned approximation is better than all the approximations given in [1]. For r = 0 the same approximation is comparable, from the accuracy standpoint, with approximation (10) (Table 3) and eqn. (3) (Table 4), the best of those given in [1].

CONCLUSIONS

1. The relationship (11) between the error of the temperature integral and the function $\rho_r(x, p)$ was derived.

2. It was shown that to compare the accuracy of various approximations it is enough to compare the values of $\rho_r(x, p)$.

3. A new third order rational approximation of the temperature integral was proposed.

REFERENCES

1 E. Urbanovici and E. Segal, Thermochim. Acta, 168 (1990) 71.

2 A.F. Bermant and I.G. Aramanovich, Mathematical Analysis, Mir, Moscow, 1986, p. 304.