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Abstract

Solidus and liqudus equiibrium lines 1n binary phenol-bisphenol A system were de-
termined with use of a DSC-1B calorimeter Expenmental equilibrium data were correlated
by means of liquud phase activity coefficient equations (Redlich-Kister, Van Laar, NRTL)
with one constraint based on the condition of solid-liquid equilibrium (Schroeder equation)

INTRODUCTION

Although the synthesis and properties of other bisphenols have widely
been reported in the literature [1,2], only bisphenol A (4,4’-isopropylidine-
bisphenol) has achieved extensive industrial use. Growing interest in and
demand for purest bisphenol A, mainly for epoxy resins [1-6], made a study
of some of its thermochemical and thermodynamic properties desirable. This
work comprises experimental results on solid-liquid equilibrium in the
binary phenol-bisphenol A system, needed for purification of bisphenol A
by melt crystallization, which produces exceptionally high purity bisphenol
A.

EXPERIMENTAL
Materials

Bisphenol A was prepared by the boron trifluoride etherate-catalysed
condensation of phenol with acetone under acidic conditions, and was
thoroughly purified. Polarographically the bisphenol A was found to contain
0.01 wt% of 2,4’-isopropylidenebisphenol. Thin layer chromatography re-
vealed only very faint spots attributable to phenol and to the ortho—para
1isomer. Differential scanning calorimetry, on a DSC-1B instrument
(Perkin—Elmer), gave a purity value of 99.98 mol%. This was obtained at a
scanning rate of 0.5°C min ™', maximum (“range 1”) sensitivity, under a
nitrogen atmosphere in volatile sample pans with fitted aluminium discs
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placed over the samples before sealing of the pans. Samples were weighed on
a Cahn model G electrobalance. Chart area was evaluated with the aid of a
General Radio electronic counter. The melting point of bisphenol A ob-
tained on the DSC-1B and extrapolated to the 100% pure material was
T.° = 431.10 K (157.95°C).

Phenol, obtained directly from an industrial column (Mazovian Petro-
chemical Works, Plock) and chromatographically 99.9% pure, was thor-
oughly dehydrated over molecular sieves type 4A and distilled off through a
3-TP column to remove sieve particles. Its melting temperature obtained
directly on the DSC-1B calorimeter was 314.00 K (40.85°C).

Method

Melting temperatures and enthalpies and heat capacities in the solid and
liquid phases for pure phenol, bisphenol A and their molecular compound
have been determined with the use of the DSC-1B calorimeter with respect
to 99.9999 mol% pure gal (International Enzymes Limited, UK), indium and
synthetic sapphire [7].

Experimental heat capacity data were correlated with quadratic or linear
equations by means of non-linear or linear regression analysis values of AC,,
which is the difference between the heat capacities of liquid and solid
substances at the melting point, calculated for phenol, bisphenol A and their
molecular compound were 15.043, 19.94 and 22.0 cal mol™! K™, respec-
tively (Table 1).

TABLE 1

Equations correlating heat capacities of phenol, bisphenol A and their molecular compound
and AC, calculated from them

Phenol, sold AC,=15.043 cal mol ' K~}
C,(T)=—4879.95+49.6816 T
—~01675 T*+18957x107* T°
Phenol, hqud
C,(T)=24312+007592 T

Bisphenol A, sohd AC,=19.94 calmol ' K™*
C,(T)=335272—1.5092 T
+2.2456 %1073 T2
Bisphenol A, hquid
C,(T)=254798—08047 T
+11517x1073 12

Phenol-Bisphenol A compound, sohd AC,=220calmol ' K™
C,(T)=344734+004237T

Phenol-Bisphenol A compound, hiqud

C,(T)=22.4659+01340 T
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The solid-liquid phase diagram for the binary phenol-bisphenol A sys-
tem was determined in the DSC-1B differential scanning calorimeter.
Liquidus lines were tested additionally by the Alekseev method.

The incongruent melting phenol-bisphenol A molecular compound in the
solid phase was found in the system; the composition of the compound was
found to be 70.81 mol% of bisphenol A.

The enthalpy of the incongruent melting compound was measured in the
DSC-1B by the extrapolation method in the range of composition from the
eutectic to the invariant point, where the pure molecular compound crystal-
lizes.

RESULTS AND CORRELATION

The experimental solid-liquid equilibrium data were correlated by means
of liquid phase activity coefficient equations with one constraint and as-
sumption of ideal behaviour of the solid phase. For the sake of correlation
the phenol-bisphenol A system was divided into two subsystems: (1)
beginning from pure phenol through the eutectic point to the invariant point
(371.15 K) on the liquidus line; (2) from pure phenol to the eutectic point
and from pure bisphenol A to the same invariant point (371.15 K) on the
liquidus line. The following models were tried.

(i) Redlich—Kister polynomial expansions RK-1 (equivalent to Regular)
to RK-4 involving 1-4 adjustable parameters

RT Iny, = x2[4 + B(1—4x,) + C(1 = 2x,)(1 - 6x,)
+D(1 - 2x,)%(1 - 8x,)|
RT Iny,=x}[4 + B(3 - 4x,) + C(1 — 2x,)(5 — 6x,)
+D(1 - 2x,)%(7 - 8x,)| 1)
(i) Van Laar
RT Invy, = Ax%/[x, + (4/B)x,]’
RT Inv,= Bx%/[x, + (B/A)x,] (2)
(iii) Renon—Prausnitz (NRTL-2, 1.e. with preset a = 0.3)

G 2 ,G
1 — 42 21 ) 12V12
n -Y] x2 |:T21( x] + G21x2 (x2 + G12x1)2

X (3)
In v = x| ( G2 ) 710
2T X+ Gaxy (%, + Gyyx,)*
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where 1, = C5/RT; 75 = C1o/RT; Gy = exp(—apmy); G =
exp( —ay7y3); ay; = ay,. The adopted maximum-likelihood (ML) method [8]
leads to minimization of the objective function as

Ax,\> (AT)\?
Q=E,"=1[( Ox') +(7}7’)

(4)

X

where Ax, and AT, are differences between the calculated and experimental
values of x and T at the i-th experimental point, respectively, and o, and o,
are the standard deviations in temperature and composition, 0.1 K and 0.001
mole fraction, respectively.

Conditions describing the solid-liquid equilibrium (Schroeder equation)
were introduced as a constraint

AH (1,—T) T
f1 fi
(Tf, _ACPI)T —ACP, ln(i)/R

On the assumption of ideal behaviour of the solid phase (no solubility of the
solid in solid) the above equation reduces for the first component to

AH (T,-T) T
f1 f1
( 7}1 _ACPI) RT ""ACPI ]Il(—]?l‘)/R

and the same for the second component with 1 =2. The symbols denote
Y, ¥, activity coefficients of solid (s) and liquid (I) phases; x,, y, mole
fraction of i-th constituent in liquid (x) and solid ( y) phases; A H,,, heat of
melting of i-th constituent; T,, melting temperature of i-th constituent; T,

equilibrium temperature; AC,,, difference in heat content between liquid

Y.y,
¥/x,

(5)

= exp

1

1
1%

(6)

= exp

TABLE 2
Model parameters and values of o, Ax, and A7, for subsystem (1)
Model Parameters (cal mol™!) ¢ Ax, AT, [x$]>1
Regular 1061 20 22.501 0.0084 112 5
Redlich—Kaster 2 1060 27 439 28 41356 0.0022 024 4
Redlich—Kaster 3 1080 37 524.97

201.60 2109 0.0010 on 4
Redlich—Kister 4 1078.13 544 05

32041 131 35 2.056 0.0009 0.11 3
Van Laar 214571 718 84 2.024 0.0009 011 4
NRTL-2 (a=03) 1947 02 —106 08 3.234 0.0017 0.34 5
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and solid phases at melting point of i-th pure component; and R, the gas
constant

Application of the maximum-likelihood method, with the errors inherent
in the x,, T, and y, observations, assumes to follow a normal distribution

pattern and to be mutually independent. An overall measure of the goodness
of fit of the model to the experimental data is then

n 1/2
6 =[Qmn/(n—m)] (7)
where the subscript min denotes the value of Q at its minimum, n the
number of experimental points, and m is number of model parameters. The
distance k, between an experimental individual i-th data point (xE, T;E) and
the estimate (x;, 7;°) of its true value is

Ax,\? AT \? e
o (I RE
0, Or

Recently [8] we have suggested that

x} = [sign (Ax,)}x,/¢

The sign of Ax, is attributed to «; in order to have the experimental point
located “below” or “above” the response curve. If systematic errors are
absent, x} should be randomly distributed about zero. The biggest excur-
sions (| k7 | > 1) may indicate outliers.

Sybsystem (1)

The composition in subsystem (1), for the sake of avoiding a shift during
data reduction, was recalculated to match the proper experimental points in
the overall composition. The results of solid-liquid equilibrium data reduc-
tion in subsystem (1) are presented in Tables 2 and 3.

TABLE 4
Model parameters and values of o, Ax, and A7, for subsystem (2)
Model Parameters (calmol™!) o Ax, AT, [k >1
Regular -33048 9.896 0.0058 0.61 6
Redhch—Kister 2 —668.04 397.72 2.147 0.0012 0.12 4
Redhich-Kaister 3 —995.87 761.82

—31341 2.876 0.0007 0.07 4
Redlich—Kister 4 —806.51 557.74

—13066 —-45.18 1.471 0.0007 0.06 5
Van Laar —484.66 —2112.01 5.534 0.0032 0.30 6

NRTL-2 (a=0.3) 2222.44 —1365.34 3.591 0.0021 0.20 6
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Table 2 summarizes, for all models used, the model parameters, an overall
measure o of the goodness of fit of the model, the mean value of Ax,, AT,
(calculated minus measured) and the last criterion of the goodness of fit:
that is, the number of outhers. Table 3 presents a full set of data for the
“best” three-parameter Redlich-Kister equation: experimental, “e”, and
calculated, “c”, values of x; and T;, model parameters o, k; showing the
reproduction of an individual experimental data point and its being “below”
or “above” the response curve, and calculated activity coefficients for solid
(1deal) and liquid phases.

Subsystem (2)

The results of experimental solid-liquid equilibrium data reduction in
subsystem (2) are presented in Tables 4 and 5. Table 4 summarizes for all
models the model parameters, an overall measure, o, of the goodness of fit
of the model, the mean value of Ax,, AT, (calculated minus measured) and
the number of outliers. Table 5 presents a full set of data for the “best”
Redlich—Kister equation.

When evaluating the goodness of fit of the mathematical model to the
experimental data, one should bear 1n mind the thermodynamic sense of the
system.
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