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Abstract

A strategy 1s described for the systematic generation of a complete set of partial
denvatives of the four energy functions from a basis set of five measured properties' V,,, S,
Cyms (8V, /8T),, and exther (8V,, /8p)r or (8V,, /8p)s. The same set of equations apphes to
both pure substances and either real or ideal mixtures.

Examples are given of some excess differential properties of binary mixtures which exhibit
unusual sensitivity to changes i composition

INTRODUCTION

References to différential thermodynamic properties of pure substances
and mixtures occur frequently in physical chemistry textbooks and journal
articles. Typically, the student of thermodynamics is made aware of the
importance of a few of these properties, notably the heat capacities, expan-
sivities and compressibilities, and of the theorems that provide the basis for
the network of mathematical relationships that exist between them.

Several elaborate schemes for using these relationships to estimate proper-
ties which are not conveniently measureable, from combinations of quanti-
ties that are, have appeared in the literature [1,2]. Such schemes tend to be
unnecessarily complicated and we are of the opinion that it is possible to
cover the same ground in a less cryptic fashion.

We have been particularly interested in the nature of the composition
dependence of the differential properties of binary liquid mixtures. We have
devised a resonably straightforward computational strategy for evaluating a
wide variety of such properties from a relatively small number of measure-
ments. It is a simple matter to extend the scheme to include the estimation
of the deviations of differential properties from the values for the corre-
sponding ideal mixtures. In this context, properties that might normally be
regarded as being of purely academic interest are found to assume a useful
role.
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BASIC EQUATIONS

Our primary objective has been to devise a computational procedure to
obtain estimates of differential quantities of the type (6 X/8Y),, where X
may be any one of the four energy functions U, H, For G, and Y and Z are
any pair of the properties p, 7, ¥V and S. There 1s a total of 48 such
properties. The temperature and pressure derivatives are extensive properties
of the system while the volume and entropy derivatives are intensive. It is a
simple matter to extend our procedure to embrace all 336 properties of the
type (6X/8Y), when X, Y and Z can be any permutation of three of the
eight quantities U, H, F, G, p, T, V and S.

It 1s appropriate to start with the familiar basic equations for a closed
system

U=TdS—p dv (1)
dH=TdS+Vdp (2)
dF=-SdT-p dv 3)
dG= -SdT+Vdp (4)

It should be noted that we have chosen the symbol F to represent the
Helmholtz free energy function, rather than 4 which is more widely used in
undergraduate texts.

We have found 1t convenient to separate the 48 properties into four
groups, one for each of the possible variables, Y. From eqns. (1)—(4), one
can easily construct Tables 1-4.

TABLE 1

Temperature derivatives

(8U/8T),=T(8S/8T), - p(8V/8T),

(8F/8T),=—S— p(8V/8T),

(8U/8T), = T(3S/8T), (8F/8T),=—S
(8U/8T)s = — p(8V/8T); (8F/8T)s=—S— p(8V/8T)s
(8H/8T), =T(8S/8T), (8G/8T),=—S

(8H/8T), =T(8S/8T), +V(6p/6T),
(8H/8T)s=V(8p/8T)s

(6G/8T )y, =—S+V(6p/8T),
(6G/8T)s=—S+V(6p/8T)g

TABLE 2

Pressure derivatives

(8U/8p)r =T(8S/8p)r — p(8V/8p)r
(8U/8p)y =T(8S/8p)y

(8F/8p)r=— p(8V/8p)r
(8F/8p)y = — S(8T/8p),

(8U/8p)s =~ p(8V/8p)s
(8H/8p)r =T(8S/8p)r +V
(8H/8p), =T(8S/8p)y +V
(8H/8p)s =V

(8F/8p)s=— S(8T/8p)s — p(8V/8p)s
(8G/8p)r =V
(8G/8p)y=—S(8T/8p)y +V
(8G/8p)s=—S(8T/8p)s+V




269

TABLE 3

Volume derivatives

(8U/8V)r=T(8S/8V)r—p (8F/8V)r=—p
(8U/8V),=T(8S/8V), - p (8F/8V), =~ S(8T/8V),— p
8U/V)s=—p (8F/8V)g=—S(8T/8V)s— p
(BH/8V); =T(8S/8V), +V(8p/8V);  (8G/8V)r=V(8p/8V )y
(8H/8V),=T(85/8V), (6G/8V), = — S(8T/8V),

(8H/8V)S = V(8p/8V)S (8G/8V)S = — S(8T/8V)S + V(8p/8V)s

In addition to p, T, V, and S, there are 24 partial differential quantities
that appear on the right-hand sides of the equations set out in Tables 1-4.
Treating p and T as controlled entities and recognizing that (8 X/8Y), =
(8Y/8X)3!, we find ourselves dealing with a set of 14 variables. That
number can be further decreased by making use of the Maxwell relation-
ships [3]

(8V/8T)s= —(8S/8p)y (5)
(8p/8T)s=(85/8V), (6)
(8S/8V)r=(8p/8T)y (7)
—(88/8p)y=(8V/3T), (8)

A further reduction from ten to eight variables is made possible by
recognizing that

(8p/8T)y= —(8V/8T) ,(8p/8V )7 9)
and
(8p/8T)s= —(8S/8T),(8p/8S)r (10)

Two of those eight variables are the volume and entropy of the system.
There is some freedom of choice in selecting the other six. We have chosen
to concentrate on three pairs.

C,=(8H/8T),=T(8S/8T), (11)
TABLE 4

Entropy derivatives

(8U/8S)r =T — p(8V/8S)r (8F/8S)r = — p(8V/8S)r

(8U/8S),=T— p(8V/8S), (8F/88), = —S(8T/8S),— p(8V/8S),

(8U/88), =T (8F/88), = — S(8T/88),

(8H/88)r =T+ V(8p/8S)r (8G/8S)r=V(8p/8S)r

(8H/8S),=T (8G/8S), = — S(8T/5S),

(8H/8S), =T +V(8p/8S), (8G/8S), = — S(8T/8S), + V(8p/8S),
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and

C,=(8U/8T),=T(8S/8T), (12)
where C, and C,, are respectively the isobaric and isochoric (isometric) heat
capacities of the system.

A,=(8V/8T), (13)
and

= (8V/8T)s= —(8S5/8p)y (14)
Ky=—(8V/dp)r (15)
and
Ks=—(8V/8p)s (16)

A, and Ag are extensive properties that are related to the isobaric and
isentropic expansivities of the system. K, and K are related to the
1sothermal and isentropic compressibilities. For condensed phase samples,
C, is more easily measured than C,. Estimates of the molar quantity 4,,,
can be derived from measurements of density at several different tempera-
tures. Of the two quantities K, and K, it is found that it is more
convenient, for liquid samples, to determine K¢ from ultrasonic speed
measurements than to try to measure K, directly.

Each of the three pairs of properties listed above are related by well-
established equations

Kr=Ks+TAL/C, (17)
Cy=C,~TA./K; (18)
As=A,-K;C,/TA, (19)

It is thus possible to express all of the 48 partial derivates of Tables 1-4
in terms of a basis set of five measurable molar quantities: V,,, Sy, C,
A, , and either K, or K. Bearing in mind that our objecuve has been to
devise a computational scheme for generating estimates of those differential
properties from experimental information, we have found it simpler to write
expressions in terms of ¥V, S, C, and Cy, 4, and 45 and K and Kj, after
having made use of eqns. (17)—(19). Such expressions are set out in Tables
5-8.

TABLE 5

Temperature derivatives

(8U/8T),=C,— pA, (8F/8T),=—S—pA,
(dU/8T)y =Cyp (8FE/8T)y=—8
(8U/8T)s = — pAs (8F/8T)s=— 8 — pA;
(8H/8T),=C, (86/8T),=—-S8
(8H/8T),=C, + VA, /Ky (0G/8T), =—-S+VA, /K7

(8H/8T)s=VC,/TA, (8G/8T)s=—S+VC,/TA,
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TABLE 6

Pressure derivatives

(8U/8p)r=—TA, + pKy (8F/8p)r = pKr

(8U/8p)y = —TA; (8F/bp)y = —SKT/Ap
(8U/8p)s = pKs (8F/8p)s=—TSA,/C,+ pKs
(8H/8p)r=—TA,+V (8G/8p)r =V

(8H/8p)y = —TAg+V (6G/8p)y =— SKy/4,+V
(6H/8p)s=V (6G/8p)s=—TS4,/C,+V
TABLE 7

Volume denvatives

(8U/8V)r=TA,/Kr— p (8F/8V)r=—p
8U/8vy),=C,/4,~p (8F/8V)p=—S/Ap—p
(8U/8V)s=—p (8F/8V)s=~S5/As—p
(8H/8V)r=TA,/Kr—-V/Kr 8G/8V)Yr=—V/Kp
(8H/8V),=C, /4, (8G/8V),=—S/A,
(8H/8V)s=-V/Kg (8G/8V )= —S/As —V/Kg
TABLE 8

Entropy denivatives

(8U/8S)r =T - pKr/4, (8F/88)r=— pKr/A,
(8U/88),=T—- pTA,/C, (8F/8S),=-TS/C,— pTA,/C,
(8U/8S)y =T (8F/88),=—-TS/Cy
(8H/88)r =T ~V/A, (8G/8S)r=—V/A,
(8H/88),=T (6G6/88),=—-TS/C,
(8H/8S)y=T—-V/Ag (6G/88)y=—TS/Cy~V/Ag

The expressions contained in Tables 5-8, taken in conjunction with eqns.
(17)—(19), can be used to calculate all 48 differential properties from five
measured quantities. These equations apply not only to pure substances but
also to mixtures of a specific composition. In the case of mixtures, the same
equations also serve to furnish estimates of the differential thermodynamic
properties of “ideal” mixtures.

The equation that defines an ideal mixture, in the Raoult’s law context of
that term, of two liquid components is

G¥=X,(GZ+RT In X,) + Xp(GF + RT In Xy) (20)
where G and G are the chemical potentials of the pure components A

and B, and X, and X are the corresponding mole fractions. The mixing
process is assumed to take place under isothermal and isobaric constraints.
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From eqn. (20), one derives

S9=X,(S2-Rn X,)+ X3(S§ — R In Xp) (21)
and

Ve=XV2+ XSV (22)
Further

Com = XCoa+ X:Gh @)
AL = Xy AT A+ Xp ATy (24)
Kim=X\K7a+ XpK7y (25)

Cin AS, and K are not mole-fraction-weighted adducts of the
corresponding properties of the pure components but can be derived using
eqns. (17)~(19). Ideal differential properties, (8 X/8Y)%, can then be de-
termined using the equations set out in Tables 5-8.

For the extensive properties, one defines the excess molar quantities by

0" =0,-0n (26)

For intensive properties, the departures (or deviations) from ideality
should be referred to as such rather than as excess quantities.

In the study of binary mixtures, there is a considerable interest in the
nature of the composition dependence of their thermodynamic properties. It
has been observed that precipitous changes in the mole fraction derivatives,
dQE/d X,, result from and are indicators of significant variations in their
patterns of molecular aggregation.

We have found that several of the excess differential properties of binary
aqueous systems exhibit very interesting patterns of composition depen-
dence. We have chosen to show some of those properties for the three
systems MeOH + H,O, EtOH+ H,0 and 1-PrOH+ H,0. We have
limited ourselves to those properties that can be determined from experi-
mental values of V,,, C,,, 4, ., and K, in view of the paucity of suitable
entropy data.

The molar volumes, 1sobaric heat capacities, and 4,,, values are taken
from the work of Benson and coworkers [4,5]. The K, values for MeOH +
water were taken from ref. 6, while those for the other two systems were
taken from ref. 7.

Table 9 lists the experimental values for the pure substances at 25° C and
1 atm. pressure. Table 10 gives the values derived for Cy.,, 45, and K.

We note that there are relatively small differences between the respective
C,m and C,,, values of the four substances. The same is true of the
differences between the Kg, and K, values. However, there are very
substantial differences between the 4, and Ag ., values.
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TABLE 9
Experimental values for selected properties of water, methanol, ethanol and 1-propanol
H,0 MeOH EtOH 1-PrOH
¥, (cm® mol 1) 18.069 4075 58 68 7518
S, (K 'mot™h 69.91 126 8 160 7 1929
Com K 'mol™) 75.29 8121 1126 1441
A, (mm’ K™ mol™?) 4,65 48.94 6373 75.41
K (mm® MPa~! mol™!) 8.09 4302 57 40 64 76
TABLE 10
Denved values of Cy,, 45, and Kr,, for water, methanol, ethanol and 1-propanol
H,0 MeOH EtOH 1-PrOH
Cym K™ mol™") 74 50 67 43 94.87 121.94
Ag ., (mm’ K™' mol ") —~439.6 —2394 —-340.3 —415.1
K1 (mm® MPa™! mol™") 8.17 51.81 68 15 76 53
TABLE 11
Estimates of selected differential thermodynamic properties
H,0 MeOH FEtOH 1-PrOH
(8H/8T)ym K™ mol™1) 84.77 105.9 1498 196 0
(8H/8T g, 981.9 2268 3479 481.8
(8H/8p) 1. (cm’ mol ") 16 68 26.16 39.68 52.70
(8U/8V )y (MPa) 169 5 281.6 2788 2938
(8U/8V), —16202 —-1659 -1767 —-1911
(BH/8V ) —2041 -505 —582 —689
(8U/8Sy (+298.15K) -01759 -0.1059 —01069 -0.1015
(8U/8S), (+29815K) -0.0018 —-0.0180 - 0169 —0.0156
(8H/38); (K) —3590 ~535 —~623 — 699
(8H/85), (K) 339 468 470 479

In Table 11, we have set out a number of values that we have estimated
for other differential properties.

As we stated at the outset, our original interest in obtaining estimates of
the differential thermodynamic properties stemmed from a desire to find
those which, for binary systems, exhibit particularly interesting, and hope-
fully informative, patterns of composition dependence.

Among the extensive properties, those which appear to be the most
interesting are the excess isentropic properties, (8U/8T)s and (8H /8T ).
Plots of those properties for the three alkanol + water system are shown in
Figs. 1 and 2 respectively. Similar plots have been published for some
alkoxyethanol + water systems [8] and also for the ethylene glycol + water
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Fig. 1 Excess molar (8U/8T); for some alkanol + water systems at 25°C (J K™! mol™1).

system [9]. One notes that the curves for the three alkanol + water systems
in each of the two figures have several features in common; there are some
obvious trends associated with increasing alkyl chain length. It is our
contention that in an aqueous environment all amphiphilic species tend to
possess, to varying extents, patterns of molecular aggregation that are labile
analogs of those identified in detergent + water systems. We have attempted
to justify our approach in an earlier publication [10]. It is argued that the
changes in the patterns of hydrophobic aggregation that result from changes
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Fig 3. Deviations of (8U/8V), from 1deahty for some alkanol + water systems at 25°C

in composition are reflected by the manner in which the macroscopic
properties vary.

One way of examining the composition dependence of the macroscopic
properties is to generate curves which can be subjected to visual scrutiny.
The raw data curves frequently appear to have no obviously dramatic
features. There exist, however, several data-reduction procedures which have
the merit of enhancing the visual impact of interesting types of composition
sensitivity. These include calculations of apparent molar, or excess molar,
properties, the reduced excess molar properties, QF/( X,(1 — X,)), partial
molar properties and the derivatives, dQF/d X,. The differential thermody-
namic properties appear to make a useful addition to that list.
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Fig 5 Deviations of (8U/8S), from 1deality for some alkanol + water systems at 25°C.

The alternative 1s to devise analytic models which serve the dual purpose
of fitting the data and, from the values of their optimized parameters,
furnish indications of the nature of the system under investigation.

For the intensive properties, the differences between the estimates derived
from an experimental data base and those calculated for an ideal system are
referred to as deviations from ideality, as opposed to excess quantities.

Among the more interesting of the sets of these “deviation” curves, for
the alkanol + water systems, are (8U/8V)] (Fig. 3), (8H/8V)g (Fig. 4) and
(6U/8S)f,’ (Fig. 5).

SUMMARY

In this article, we have described a systematic strategy for estimating a
wide variety of differential thermodynamic properties of pure or mixed
systems from a relatively hmited experimental data base. It should be
pointed out that while this strategy involves relationships that are clearly set
out in many textbooks, we know of no treatment that has addressed the
issue of identifying the experimental basis for total thermodynamic char-
acterization.

The principal utility of our strategy is, in our view, the provision of a
means of obtaining sensitive empirical indicators of the existence of signifi-
cant shifts in the composition dependence of the molecular-scale aggregative
characteristics of binary mixtures.

We note, in passing, that it is an interesting exercise to generate the
equations of Tables 5-8 for an ideal gas sample. In that case, the number of
experimental entities that appear on the right-hand sides is reduced to just
S and C, .. Integration of those equations provides us with expressions for
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changes in the thermodynamic properties under the conditions of constant
T, p, V and S. The same type of treatment could be applied to other
equations of state.
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