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A strategy 1s described for the systemattc generation of a complete set of partial 
derivatives of the four energy functions from a basis set of five measured propertres V,, S,, 
Cp,m, (SV,/ST), and etther (ISV~/SP)~ or (SV,/Sp),. The same set of equations apphes to 
both pure substances and either real or ideal nuxtures. 

Examples are gtven of some excess drfferentml properties of bmary rmxtures which exhrbrt 
unusual sensttrvity to changes m composition 

INTRODUCTION 

References to diff&ntial thermodynamic properties of pure substances 
and mixtures occur frequently in physical chemistry textbooks and ~oumal 
articles. Typically, the student of thermodynamics is made aware of the 
importance of a few of these properties, notably the heat capacities, expan- 
sivities and compressibilities, and of the theorems that provide the basis for 
the network of mathematical relationships that exist between them. 

Several elaborate schemes for using these relationships to estimate proper- 
ties which are not conveniently measureable, from combinations of quanti- 
ties that are, have appeared in the literature [1,2]. Such schemes tend to be 
unnecessarily complicated and we are of the opinion that it is possible to 
cover the same ground in a less cryptic fashion. 

We have been particularly interested in the nature of the composition 
dependence of the differential properties of binary liquid mixtures. We have 
devised a resonably straightforward computational strategy for evaluating a 
wide variety of such properties from a relatively small number of measure- 
ments. It is a simple matter to extend the scheme to include the estimation 
of the deviations of differential properties from the values for the corre- 
sponding ideal mixtures. In this context, properties that might normally be 
regarded as being of purely academic interest are found to assume a useful 
role. 
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BASIC EQUATIONS 

Our primary objective has been to devise a computational procedure to 

obtain estimates of differential quantities of the type (~X/C?Y),, where X 
may be any one of the four energy functions U, H, For G, and Y and Z are 
any pair of the properties p, T, V and S. There 1s a total of 48 such 
properties. The temperature and pressure derivatives are extensive properties 
of the system while the volume and entropy derivatives are intensive. It is a 
simple matter to extend our procedure to embrace all 336 properties of the 
type (6X/6Y), when X, Y and Z can be any permutation of three of the 
eight quantities U, H, F, G, p, T, V and S. 

It is appropriate to start with the familiar basic equations for a closed 
system 

dU=TdS-p dV (1) 
dH=TdS+Vdp (2) 
dF= -S dT-p dV (3) 
dG= -SdT+Vdp (4) 

It should be noted that we have chosen the symbol F to represent the 
Hehnholtz free energy function, rather than A which is more widely used in 
undergraduate texts. 

We have found it convenient to separate the 48 properties mto four 
groups, one for each of the possible variables, Y. From eqns. (l)-(4), one 
can easily construct Tables l-4. 

TABLE 1 

Temperature denvatives 

(NJ/ST), = T(GS/ST), - p(SV/ST), 
(SU/ST), = T(SS/ST), 
(NJ/6T), = - p(W/6T), 
(6H/6T), = T( SS/GT), 
(SH/ST), = T(tW/aT), + V(‘(Sp/ST), 

(Sff/ST), = V(‘(Sp/ST), 

(6F/6T), = - S - p(W/6T), 
(SF/ST), = - S 
(SF/ST), = - S - p(W/6T), 
(SG/GT), = - S 
(GG/ST), = -S + V(Gp/ST), 
(SC/ST), = - S + V( Gp/ST), 

TABLE 2 

Pressure denvatwes 

(~U,‘~P)T = T(SS/ap), - P(SV/~P), 
(SU/Sp)v = T(@/Sp)v 
(SU/SP), = - P(6VDP)s 
(Sff/Sp), = T(GS/ap), + V 
(aH/ap), = T(GS/Sp). + V 
(Sff/Gp), = V 

(~F/&P), = - P(SV/SP)T 
(SF/~P)Y = - S(GT/ap), 
(~F/~P)s = - S(aT/ap), - P(SV,‘GP), 
(SG/ap), = V 
(6G/8p), = - S(ST/Gp), + V 
(SG/Gp), = - S( 6T,/6p), + V 



269 

TABLE 3 

Volume derivatives 

(SU/SV), = qss/sv), - p (SF/W), = - p 
(SU/SV), = T( 6S/W), - p (GF/SV), = - S(ST/SV), - p 

(SU/SV), = - p (SF/W), = - S( 6T/W), - p 

(6H/SV), = T( 6S/W), + V( Sp/GV), (aG/W, = V(~P/W, 

(SH/W, = T(Wfw, (GG/SV), = - S( ST/&V), 

(SH/W, = V(‘(GP/W, (SG/GV), = - S(ST/SV), + V(c?p/SV), 

In addition to p, T, V, and S, there are 24 partial differential quantities 
that appear on the right-hand sides of the equations set out in Tables l-4. 
Treating p and T as controlled entities and recognizing that (SX/GY), = 
(GY/SX),‘, we find ourselves dealing with a set of 14 variables. That 
number can be further decreased by making use of the Maxwell relation- 
ships [3] 

@IV% = - (W~P)v (5) 

@p/aT)s = (WS% (6) 

@S/a%= (ap/ST)v (7) 

-(W~P)V= @VT), (8) 

A further reduction from ten to eight variables is made possible by 
recognizing that 

@p/ST).= -(V/~T),(~PW’). 

and 

(9) 

@P/ST)S = - (WST),(SP/%- (10) 

Two of those eight variables are the volume and entropy of the system. 
There is some freedom of choice in selecting the other six. We have chosen 
to concentrate on three pairs. 

CP = (H/ST), = T( S/ST), (11) 

TABLE 4 

Entropy denvatwes 

(SU/SS), = T- p(SV/SS), (SF/GS), = - p(SV/SS>, 

(SI_J,,SS), = T- p(SV/SS), (6F/6S), = - S( ST/M), - p( 6V/6S), 

(SU/SS), = T (SF/&Q, = - S(ST/SS), 
(SH/SS), = T+ V(8p/GS)T (SG/W, = V(~P/WT 
(SH/SS), = T (&G/&7), = - S( ST/&S), 
(GH/SS), = T+ V(?IP/~S)~ (6G/i?S), = - S(ST/SS), + V(GP/SS)~ 
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and 

cr/= (SU/GT),= T(SS/ST), (12) 
where CP and C,, are respectively the isobaric and isochoric (isometric) heat 
capacities of the system. 

A,, = (SV/6T), (13) 

and 

A,= (W/i?T),= -(SS/Sp), (14) 

K,= -w/w. (15) 
and 

JG = - (WWS (16) 
A, and A, are extensive properties that are related to the isobaric and 

isentropic expansivities of the system. K, and K, are related to the 
isothermal and isentropic compressibilities. For condensed phase samples, 
C, is more easily measured than C,. Estimates of the molar quantity A,,, 
can be derived from measurements of density at several different tempera- 
tures. Of the two quantities K, and K,, it is found that it is more 
convenient, for liquid samples, to determine K, from ultrasonic speed 
measurements than to try to measure K, directly. 

Each of the three pairs of properties listed above are related by well- 
established equations 

K, = KS + TA;/C, (17) 

Cv = Cp - TA;/K, (18) 
A, = A, - K&‘/TAP (19) 

It is thus possible to express all of the 48 partial derivates of Tables l-4 
in terms of a basis set of five measurable molar quantities: V,, S,, C,,,, 
A,,, and either KS,, or K,,. Bearing in mind that our objective has been to 
devise a computational scheme for generating estimates of those differential 
properties from experimental information, we have found it simpler to write 
expressions in terms of V, S, CP and C,, A, and A, and KT and KS, after 
having made use of eqns. (17)-(19). Such expressions are set out in Tables 
5-8. 

TABLE 5 

Temperature derivatives 

(NJ/ST), = CP - pAP (SF/ST), = - S - pAP 

(&J/ST), = C, (GF/ST), = - S 

(&J/ST), = - PA, (GF/ST), = - S - PA, 
(SH/ST), = CP (6G/6T), = -S 

(GH/ST), = C, + VA,/K, (GG/ST), = - S + VA,/K, 

(6H/i?T), = VCJTA, (6G/6T), = - S + VCJTA, 



271 

TABLE 6 

Pressure denvatlves 

(1W/8p)~ = - TA, + pK, (~F/SP), = PKT 
(SU/Sp) v = - TA, (SF/&p), = - =,/A, 

(W~P), = PKS (ilF/&p), = - TSAP/C’ + pK, 
(SH/Gp), = - TA, + V (SG/~P)T=V 
(6H/6p), = - TA, + V (SG/Gp), = - SK,/A, + V 

(~HPP), = V (tiG/ap), = - TSA,/C, + V 

TABLE 7 

Volume denvatms 

(SU/SV), = TAP/KT - p 

(WSV), = C,/A, -P 
(m/w), = - p 
(6H/W), = TAP /KT-VKT 
(6HP), = C,/A, 
(GH/SV), = - V/K, 

(SF/W), = -p 

(SF/W), = - S/AP - p 
(6F/SV), = - S/A, - p 
(SG/GV), = - V/K, 

(SG/GV), = - S/AP 
(SG/GV), = - S/A, - V/K, 

TABLE 8 

Entropy denvatwes 

(iXJ,/SS), = T - pK,/A, 
(NJ/&S), = T-PTA&, 
(GU/SS), = T 
(SH/GS), = T - V/AP 
(SH/GS), = T 
(SH/GS), = T- V/A, 

(W/~S)T=- PKT/A, 
(GF/SS), = - TS/C, - pTAP/C’ 
(6F/6S) v = - TS/C, 
(6G/6S), = - V/AP 
(SG/SS), = - TS/C, 
(GG/SS), = - TS/C, - V/As 

The expressions contained in Tables 5-8, taken in conjunction with eqns. 
(17)-(19), can be used to calculate all 48 differential properties from five 
measured quantities. These equations apply not only to pure substances but 
also to mixtures of a specific composition. In the case of mixtures, the same 
equations also serve to furnish estimates of the differential thermodynamic 
properties of “ideal” mixtures. 

The equation that defines an ideal mixture, in the Raoult’s law context of 
that term, of two liquid components is 

G2 = X,(Gz + RT ln XA) + X,(G; + RT ln XB) (20) 

where GT and Gz are the chemical potentials of the pure components A 
and B, and X, and X, are the corresponding mole fractions. The mixing 
process is assumed to take place under isothermal and isobaric constraints. 
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From eqn. (20) one derives 

Sz = XA( ST - R ln XA) + Xe( Sz - R In XB) 

and 

(21) 

v;d = x,v** + x;vB* 

Further 

(22) 

c ;Pm = XACpYA + X&?i (23) 

$,nl = X*AE* + Xr&L3 (24) 

K & = XAK& + XBGI3 (25) 

Cd A&, and K& V,m, are not mole-fraction-weighted adducts of the 
corresponding properties of the pure components but can be derived using 
eqns. (17)-(19). Ideal differential properties, (SX/SY)l,d, can then be de- 
termined using the equations set out in Tables 5-8. 

For the extensive properties, one defines the excess molar quantities by 

Q”=Q,-Q: (26) 
For intensive properties, the departures (or deviations) from ideality 

should be referred to as such rather than as excess quantities. 
In the study of binary mixtures, there is a considerable interest in the 

nature of the composition dependence of their thermodynamic properties. It 
has been observed that precipitous changes in the mole fraction derivatives, 
dQE/dXA, result from and are indicators of significant variations in their 
patterns of molecular aggregation. 

We have found that several of the excess differential properties of binary 
aqueous systems exhibit very interesting patterns of composition depen- 
dence. We have chosen to show some of those properties for the three 
systems MeOH + H,O, EtOH + H,O and 1 - PrOH + H,O. We have 
limited ourselves to those properties that can be determined from experi- 
mental values of V,, C,,,, A,,, and KS,,, in view of the paucity of suitable 
entropy data. 

The molar volumes, isobaric heat capacities, and A,, values are taken 
from the work of Benson and coworkers [4,5]. The KS,,, values for MeOH + 
water were taken from ref. 6, while those for the other two systems were 
taken from ref. 7. 

Table 9 lists the experimental values for the pure substances at 25 o C and 
1 atm. pressure. Table 10 gives the values derived for C,,, A,,, and K,,. 

We note that there are relatively small differences between the respective 
C and Cvm values of the four substances. The same is true of the 
d%%rences between the KS, and G,, values. However, there are very 
substantial differences between the A,,, and A,,, values. 
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TABLE 9 

Expenmental values for selected properties of water, methanol, ethanol and 1-propanol 

H20 MeOH EtOH l-PrOH 

V, (cm3 mol-‘) 18.069 40 75 58 68 75 18 
S, (J K-’ mol-‘) 69.91 126 8 160 7 1929 
Cp,, (J K-’ mol-‘) 75.29 8121 112 6 144.1 
A,+, (mm3 K-’ mol-‘) 4.65 48.94 63 73 75.41 
KS.,, (mm3 MPa-’ mol-‘) 8.09 43 02 5740 64 76 

TABLE 10 

Denved values of C,,, A s,m and KT,~ for water, methanol, ethanol and 1-propanol 

H2O MeOH EtOH l-PrOH 

C,, (J K-’ mol-‘) 74 50 67 43 94.87 121.94 
A,,, (mm3 K-’ mol-‘) - 439.6 -2394 - 340.3 - 415.1 
K,, (mm3 MPa-’ mol-‘) 8.17 51.81 68 15 76 53 

TABLE 11 

Estunates of selected dlfferentlal thermodynanuc properties 

H2O MeOH EtOH l-PrOH 

(SH/GT),,, (J K-’ mol-‘) 

(~WWS,, 
(sH/sp)T,m cm3 mo1-‘) 

(su/sv)T WW 

(w/m, 

(SHbwT 

(NJ/SST (+ 298.15 K) 
(W/I%), ( + 298 15 K) 

(sH/Gs)T 6) 

(@f/W, W 

84.77 
981.9 

16 68 
169 5 

- 16202 
- 2041 

-0 1759 
- 0.0018 

- 3590 
339 

105.9 
226 8 

26.16 
281.6 

- 1659 
- 505 

- 0.1059 
- 0.0180 

- 535 
468 

149 8 196 0 
347.9 481.8 

39.68 52.70 
278 8 293 8 

- 1767 - 1911 
- 582 - 689 

-0 1069 - 0.1015 
-0 0169 - 0.0156 

-623 - 699 
470 479 

In Table 11, we have set out a number of values that we have estimated 
for other differential properties. 

As we stated at the outset, our original interest in obtaining estimates of 
the differential thermodynamic properties stemmed from a desire to find 
those which, for binary systems, exhibit particularly interesting, and hope- 
fully informative, patterns of composition dependence. 

Among the extensive properties, those which appear to be the most 
interesting are the excess isentropic properties, (&Y/ST), and (M/ST),. 
Plots of those properties for the three alkanol + water system are shown in 
Figs. 1 and 2 respectively. Similar plots have been published for some 
alkoxyethanol + water systems [8] and also for the ethylene glycol + water 
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1-0.016 

QO 0.1 Q2 0 3 0.4 OS 0.6 0.7 0.3 0.9 10 

X(ROH) 
OkoH - EWH . l-ROH 

Fig. 1 Excess molar (&Y/ST), for some alkanol+ water systems at 25°C (J K-’ mol-‘). 

system [9]. One notes that the curves for the three alkanol + water systems 
in each of the two figures have several features in common; there are some 
obvious trends associated with increasing alkyl chain length. It is our 
contention that in an aqueous environment all amphiphilic species tend to 
possess, to varying extents, patterns of molecular aggregation that are labile 
analogs of those identified in detergent + water systems. We have attempted 
to Justify our approach in an earlier publication [lo]. It is argued that the 
changes in the patterns of hydrophobic aggregation that result from changes 
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0 

-=O 
-10 J 

0.0 0.1 0.2 0.3 0.4 

0 MOOH - 

Fig. 2 Excess molar (SH/GT), for 

-100 
06 0.7 08 0.9 1.0 

EtOH l l-Pm-l 

some alkanol+water systems at 25’C (J K-’ mol-‘). 
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0 1 0.2 0 3 0.4 0.5 0.6 0 7 0.8 0 0 1 
XmOH) 

0 M&H - EtOH l I-PrOH 

Fig 3. Devlahons of (SU/SV), from ldeahty for some alkanol+ water systems at 25 ’ C 

in composition are reflected 
properties vary. 

One way of examining the 

by the manner in which the macroscopic 

composition dependence of the macroscopic 
properties is to generate curves which can be subjected to visual scrutiny. 
The raw data curves frequently appear to have no obviously dramatic 
features. There exist, however, several data-reduction procedures which have 
the merit of enhancing the visual impact of interesting types of composition 
sensitivity. These include calculations of apparent molar, or excess molar, 
properties, the reduced excess molar properties, Q”/( X,(1 - X,)), partial 
molar properties and the derivatives, dQE/dXA. The differential thermody- 
namic properties appear to make a useful addition to that list. 

0.3 0.4 0.5 0.6 0.7 0.8 0.0 1 

OkOH - EfiFH’ l I-PIOH 

Fig 4 Devlatlons of (W/W), from ideahty for some alkanol+ water systems at 25OC. 
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-04. ’ .“” .-04 

-0 --0 6 
0.1 02 03 04 0.5 06 07 08 0.9 1.0 

X(ROH) 
0 MaOH - EtOH a I-ROH 

Fig 5 Devlatlons of (SU/SS), from ldeahty for some alkanol+ water systems at 25 o C. 

The alternative is to devise analytic models which serve the dual purpose 
of fitting the data and, from the values of their optimized parameters, 
furnish indications of the nature of the system under investigation. 

For the intensive properties, the differences between the estimates derived 
from an experimental data base and those calculated for an ideal system are 
referred to as deviations from ideality, as opposed to excess quantities. 

Among the more interesting of the sets of these “deviation” curves, for 
the alkanol + water systems, are (SU/SV)F (Fig. 3), (6H/6V)F (Fig. 4) and 
(SU/SS)F (Fig. 5). 

SUMMARY 

In this article, we have described a systematic strategy for estimating a 
wide variety of differential thermodynamic properties of pure or mixed 
systems from a relatively hmited experimental data base. It should be 
pomted out that while this strategy involves relationships that are clearly set 
out in many textbooks, we know of no treatment that has addressed the 
issue of identifying the experimental basis for total thermodynamic char- 
actenzation. 

The principal utility of our strategy is, in our view, the provision of a 
means of obtaining sensitive empirical indicators of the existence of signifi- 
cant shifts in the composition dependence of the molecular-scale aggregative 
characteristics of binary mixtures. 

We note, in passing, that it is an interesting exercise to generate the 
equations of Tables 5-8 for an ideal gas sample. In that case, the number of 
expenmental entities that appear on the right-hand sides is reduced to Just 
S,,, and CP,,. Integration of those equations provides us with expressions for 



277 

changes in the thermodynamic properties under the conditions of constant 
T, p, V and S. The same type of treatment could be applied to other 
equations of state. 
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