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Abstract 

Relaxation phenomena have become a major concern in non-crystalline materials. In the 
present paper we deal with a phenomenological modei, based on the Kovacs equation, 
describing enthalpic relaxation in glasses. Only a single relaxation time, r, is considered. The 
model is built up in steps of progressive complexity. Here, two cases are distinguished: (i) a 
pure thermal dependence. for r, and (ii) a combined dependence with temperature and the 
departure from equilibrium. Comparisons with calorimetric measurements performed on 
amorphous selenium show generally good agreement, but indicate the need for consideration 
of a dist~bution of relaxation times. 

1. INTRODUCTION 

Empirical approaches to describe the phenomena associated with the glass 
transition are particul~ly valuable to represent the enthalpy relaxation of a 
large number of non-crystalline materials [l-4]. Up to now the most ’ 

satisfying account of structural relaxation in glasses is in terms of the model 
of Kovacs et al. [5,6]. 

Conceptually, the KAHR (Kovacs-Aklonis-Hutchinson-Ramos) equa- 
tions are derived in a general way from the classical order parameter model. 
In this model it is assumed that the state of the system depends on 
temperature, T, pressure, P, and a number of order parameters 2,. Assum- 
ing a single ordering parameter 2, the thermodynamic potential +( T, P, Z) 
can be decomposed in an infinitesimal change as follows 

d+ = (W’~T),,, dT+ @Wif%-,z dP + (~#/~Z~=,~ dZ 

At constant pressure, and adopting the enthalpy H as +, we obtain 

dH/dt = (Uf,/~T),,, dT/dt + @H/&2& dZ/dt 

where t is the experimental time. 
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Fig. 1, Temperature dependence of the enthalpy H in the formation process of a glass and 
isothermal evolution at temperature 7’. 

Accordingly, the heat capacity at constant pressure of the glass and the 
supercooled liquid can be expressed as 

where H, is the equilibrium enthalpy at temperature T. 
Defining a new variable, S = H - H,, which is a measure of the departure 

from equilib~um, and assuming that a variation of the ordering parameters 
will produce a change 6, the rate of which is assumed to be proportional to 
the instantaneous departure from equilibrium, it is straightforward to obtain 
the single Kovacs equation 

- di$/dt = AC& + S/r 

where AC, = Cp,/ - Cp,p is the increment of the heat capacity in the transi- 
tion range, 7 is the relaxation time and q = dT/dt is the cooling or heating 
rate. Figure 1 displays the most relevant magnitudes considered in the text. 

In the frame of an N ordering parameters theory, Kovacs et al. decom- 
posed S into N finite portions such that 

in which each ii, indicates a fractional departure from equi~b~um. 
Physically, the order parameters might represent either molecular motions 

controlling a specific fraction ai of the whole 6 or such things as the number 
of broken bonds of various types, the number of sites with a particular 
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geometry, etc. We can assume in any case that each 6, yields the correspond- 
ing Kovacs equation, leading to a system of N differential equations 

- dS,/d t = AC’, q + S/r, (i=l, . ..N) 

which are denominated the KAHR equations. 
In previous papers [7,8] we have reported some enthalpic relaxation 

phenomena through the glass transition region in thermally evaporated 
amorphous specimens of Se and Se,,_,Bi, (X Q 3.4). Details of the experi- 
mental arrangement used were described previously [7,8]. Nevertheless, it is 
interesting to point out that specific heat measurements were made with a 
Perkin-Elmer DSC-II-C differential scanning calorimeter and the rejuvena- 
tion method [9] for the heat treatments was used in order to achieve the best 
repeatability of the measurements. From the performed experiments these 
phenomena were classified in a qualitative fashion as: (i) cooling rate effects, 
(ii) aging effects and (iii) memory effects. Some of the results were interpre- 
ted on the basis of the activation energy spectra (AES). This last formalism 
allowed us to formulate an alternative description of the structural relaxa- 
tion. 

The aim of the present work is to develop a model, in the frame of a 
distribution of relaxation times, which accounts for the main features of 
structural relaxation of amorphous selenium. In fact, the occurrence of 
memory effects observed after two successive temperature steps (crossover 
phenomena) or more such steps involves a multiplicity of relaxation mecha- 
nisms controlling the structural relaxation. Although in recent years differ- 
ent approaches to this problem have been proposed [2,5,6,10-121, its appli- 
cation was based mainly on the simpler and mathematically convenient 
temperature dependence for T suggested by Twyman [13]. In this paper we 
have assumed the Narayanaswamy dependence [14], which is a more general 
view and is consistent with an Arrhenius dependence. 

We shall build up our model gradually, following three consecutive steps. 
The present paper deals with the simple approximation of a single relaxation 
time, 7. Here, two cases may be distinguished: (i) a pure thermal depen- 
dence for 7, 7 = 7(T), or (ii) a combined dependence with temperature and 
structure, 7 = T( T, 6). In applying these approaches, only limited success 
was achieved, suggesting the need for the more general approach adopted in 
a forthcoming paper: a third step considering the case of a distribution of 
relaxation times. However, we adopt a continuous integral representation of 
6 instead of the discrete representation of the Kovacs model. This approach, 
suggested by Chow and Prest [15], appears as a logical extension of the 
discrete model when N is large. 

The numerical calculations are fitted to calorimetric experimental data for 
evaporated amorphous selenium and compared with the results deduced by 
the alternative AES method. Both approaches give us a picture of the 
dominant process in the relaxation of amorphous selenium. We have not 
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attempted to fit the more complex Se-Bi experimental results, where com- 
positional changes (spinodal transformation) add to structural relaxation. 

2. SEPA~TION OF T~E~L AND STRU~U~L CONTRIBUTIONS TO T 

Tool [16] was the first to propose that one can separate the relative 
contributions of structural parameters, here characterized by 8, from that of 
temperature by means of an adjustable partition parameter. 

In practice, the separation is as follows: 

in 7 = In A +f(T) f g(8) 

where f(T) is the pure thermal dependence and g(S) characterizes the 
structural state. 

So far the expression 

g(S) = -C(H- HJ 

has been used extensively (where c is a constant). Alternatively, the concept 
of fictive temperature, T,, describes the deviation of a system from equi- 
librium for any freezing-in transition [10,16]. The fictive temperature is the 
actual temperature at which the configuration would be at eq~ilib~um. For 
an experiment of enthalpic relaxation, Tf may be obtained at the intersec- 
tion of the extrapolation of the equilibrium line with the straight line 
through P (the point representing the actual configuration) and whose slope 
is CP,$. In this way, g(S) may be expressed as 

g(@ = -fT,- 77 

which is equivalent to the former expression because of the relation 

H-Ii,=AC,(T,-T) 

which is realized if the heat capacities, CP,l and C‘,_ both remain constant 
in the thermal region studied (Fig. 1). 

With respect to the thermal dependence, f(T), for practical reasons many 
authors have adopted the linear law 

f(T) = -bT 

Nevertheless, in our work the Arrhenius dependence, which contains the 
activation energy, E 

f( 1”) = E/kT 

has been used. This relation is included in the Narayanaswamy form for T 
used throughout this paper: 

T( T, 8) = A exp(_zE/kT) exp[(l - x) E/kT,] 

in which x is a partition parameter (0 < x < 1) characterizing the pure 
contribution of temperature to 7. The Narayanaswamy form for 7 is 



consistent with a viscosity which obeys an Arrhenius law within and above 
the glass transition range. 

The alternative form 

7(T, s)=Aexp(-BT)exp[-(1-x)B(T,-T)] 

was analyzed by Hutchinson and Kovacs [17]. 
The treatment which follows in the next section concerns the case of pure 

thermal dependence (x = l), r = 7(T). 

3. PURE THERMAL DEPENDENCE 

3. I Cooling equations 

Here we consider the isobaric cooling (q- < 0), assuming the cooling rate 
to remain constant during the experiment. One can write T - T, = q-t, 
where T, is the starting temperature. 

Hence, the relaxation time is 

7 = r0 exp( E/kT) = T,,e” 

with x = E/kT. 
Differentiating this last expression we obtain 

dx= --37/x2 dT 

where m = k/E 
In this way, the single Kovacs equation can be written in the form 

d8/dx + Sb = 
x2 ex 

a/x2 

by the substitutions 

a=AC,/m>O 

In this last equation the preexponential factor ro, together with E and 
AC,, are considered material constants, whereas q and the pair of starting 
conditions (To, So) are experimental conditions. The integration of the 
equation depends critically on the sign of q; this is the reason we analyze 
separately the cooling and heating experiments. 

For the cooling equation the value of S for any temperature is 

6(x) = F(x) eUcX) + 8, e@)-‘O 

where 



with R(x) = /;-’ e-‘dt, F(x) = alxtm2 eeU(‘) dt 
XII x0 

and x,, = E/W,‘,. 
In practice, the cooling experiment starts from an equilibrium state 

(6, = 0). Then the solution for 6 may be written as 

64 = al: -‘exp[u(x) - u(a)] dcu 

and the argument of the exponential is given by 

E,(x) being the exponential integral function 

E,(x) = lwtm’ e-‘dt 

For practical cases, the numerical computation of E,( LY) - E,(x) necessi- 
tates working in quadruple precision in order to get sufficiently accurate 
numbers. 

Now, it can be shown that a simple relationship exists between the 
experimentally available glass transition temperature, Tg, and the material 
constant E. It has long been appreciated that when a glass-forming system is 
frozen its fictive temperature 
sense the glass temperature is 

q= Fmo(Tr- T) 
-+ 

but for continuous cooling Tf 

T,=S/AC,+T 

Thus, 

is constant (isoconfigurational state). In this 

is represented by 

T, = lim E lXnm2 
T-0 k x0 

exp[u(x) -u(a)] dcu 

= (E/k)jmC2 exp{ -b[e-*/cu - E,(a)]} da 
x0 

On the other hand, the E,(cy) function can be written [18] 

E,(a) = e -“/a[1 - l!/a + 2!/(u2...] = e-*/cu[l -A(a)] 

where the A( CX) function 

A( LX) = 5 (- l)“%~!/~~ 
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Fig. 2. Plot of #(a) versus a for b = 1047. 

is an alternate series which rapidly converges toward zero as (Y increases. 
Hence 

Tg = (E/k)Lra-’ exp[ -“,“,!“‘I da 

The function $(a) = exp[ - b A( a) (Y-’ ema] has some pleasing features 
arising from the properties of the A( a) function and from the large values of 
parameter b (for a practical case b 2: 104’). In fact #(a) behaves like a step 
function; for some Cu value 

J/(cr) =o, a<cy 

$(Cx)=l, a>a 

as one can see in Fig. 2. The value Cr should correspond approximately 
the inflexion point of J/(a) located at its sharp rise. In deriving the value 
(Y we have shown the straightforward relationship 

A’( a) = A( a)(1 + l/a) - l/cu 

from which we obtain 

E ea( E - 2) = b 

which may be simplified to the expression 

a2 e’ = b 

since in practice E = 102. 
In this way we have 

to 

of 

The above relation shows that, for any practical case, the activation 
energy, E, is the relevant parameter controlling the correct position of Tg. 

For purposes of discussion we shall now consider the crude approximation 

e’ = b 

instead of the full transcendental equation providing E (in fact, the error in 



obtaining E by means of this approximation is smaller than 9%). Then we 
can express Tg as 

E 
Tg = 

k In 
1 

%14- Im 

and differentiating with respect to 1 q- ) one obtains the expression 

kT,2 
dT,/dln)q- 1 =E 

showing that the variation of T,( 1 q- I) with the cooling rate is also 
controlled by E. This result agrees with the results of Moynihan et al. [19] 
and Kovacs et al. [6] derived from different expressions for the relaxation 
time. 

Moreover, the following equivalent relationship 

din lq- I 
41/T,) 

= -E/k 

suggests a powerful way for deriving the activation energy from the T,( q-) 
dependence. 

Finally, it must be said that for an isothermal annealing stage (q = 0) the 
Kovacs equation leads to 

6 = 8, eer/’ 

in which 7 is a constant, being a constant temperature T. 

3.2 Heating equations 

In this case we have q+> 0; we perform the same substitutions as for the 
cooling case except 

b=&>O 
mq r. 

and we obtain the heating equation 

= a/x2 

In this way the solution is 

S(x) = G(x) e- w(x) + 6, e”O-“‘“’ 

where 

G(X) = alI$ eW(‘) 

and 8, is the initial disequilibrium. 
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TABLE 1 

Experimental values of parameters used in the simulations 

r, T, 

340 K 296 K 

14-1=4+ CP, 

20 K min-’ 35.68 J mol-’ K-l 

c 
PS 

24.42 J mol-’ K-’ 

3.3 Computer simulations based on r = T( Tj 

In this section we show the computer simulations of the behavior of 
amorphous Se around Tg by the model just presented. In fact we analyze 
here the cyclic experiment (cooling-annealing-heating). Such an experiment 
consists in cooling the sample through the Tg range from To to TV (tempera- 
ture of isothermal hold), and subsequent reheating to To. Table 1 is a 
summary of the parameters defining the experimental conditions. 

At first thoughts, E and TV should be adjustable parameters of the model. 
In practice, for the initial guess E and ~~ were deduced, respectively, from 
the experimental T,(q-) dependence and from the S versus time fit during 
the isothermal stage. 

Figure 3 displays the In 1 q- 1 versus 103/T, observed dependence for 
several cooling-reheating experiments, where 1 q- 1 = q+. The value E = 2.7 
eV/at is obtained from the slope. Notwithstanding the relative simplicity of 
the adopted model this value of the activation energy is in fair agreement 
with the one obtained (E = 2.48 eV/at) from viscosity measurements 1201, 
and with the result E = 2.1 eV/at derived from the maxima of the AES 
reported in [S]. Our preliminary result for E is fairly consistent with the 
energy (2.1 eV/at) corresponding to the strength of a Se-Se bond in trigonal 

-3-. 

c, 
3.10 312 3.14 3.16 3.18 

lOa/ Tg (K-*3 

Fig. 3. Plot of In lq- 1 versus lO”/T, for several DSC measurements with different cooling- 
reheating rates, where 1 q- 1 = q+. 
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Fig. 4. Experimental time dependence of the relaxation function Mp for the relaxation of 
a-Se at several annealing temperatures. 

chains. Therefore, this result supports the idea that a dominant role in the 
relaxation process of Se is played by the breaking and reconstruction of 
trigonal chains [21]. 

We now attempt to approach the value of r0 from the behavior during the 
isothermal step 

The relaxation is manifested by the change of a certain property P which 
is connected with 8. For the normalization of the response the following 
function seems to be convenient 

M,(t) = ;o;F = 6/l?, = exp - 
m ( To e’lkT) 

where the subscripts to P denote the appropriate instants of time. 
Figure 4 shows the experimental time dependence of MP for several 

annealing temperatures when the excess enthalpy (the enthalpy relaxed 
during annealing and reabsorbed by the glass to reach its metastable 
equilibrium) was taken as the P property sensitive to the relaxation of a-Se 
[22]. From the slope of the straight line In Mp(t) versus t, and the previ- 
ously determined value of E, we obtain an average value r. = 5.7 x 1O-43 s. 
Afterwards the initial values of E and 7. may be iteratively modified in 
order to obtain the best fit to the experimental results. 

Figures 5 and 6 correspond, for different cooling and heating rate ratios, 
to the calculated temperature plots for the fictive temperature Tf during 
cyclic experiments where we combine several cooling/heating rates. The 
cycles were performed without an isothermal hold. The outstanding features 
are as follows: the fictive temperature follows the actual temperature in the 
beginning of cooling and asymptotically approaches the constant values 324 
K and 304.5 K, depending on the cooling rate. During reheating, the fictive 
temperature crosses the equilibrium line, and then converges with it at 
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Fig. 5. Fictive temperature vs. temperature. Computer simulations of rapid-rapid and 
slow-slow processes based on T = T(T). 

higher temperatures. Slow reheating (q+= 1 K mm-‘) provides enough time 
for the system to approach the equilibrium line using a short route, closely 
following the equilibrium line afterwards. In contrast, rapid reheating (q+= 
600 K min-‘) of the amorphous sample produces a large overshoot and a 
vigorous approach toward the equilibrium line from below. 

The dependence on the time of isothermal hold at TV is given in Fig. 7. 
The simulated experiments were performed with the usual parameters of 

[q-(=600 K /min 

q+-600 K /min 
To(> 

300 310 320 330 340 

Fig. 6. Fictive temperature vs. temperature. Computer simulations of rapid-slow and slow- 
rapid processes based on r = T(T). 
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Fig. 7. Temperature dependence of the heat capacity CP in the glass transition range. The 
simulated experiments were performed with the usual parameters of Table 1 and aging times 
of 0 and 50 min. 

Table 1 and aging times of 0 and 50 min, respectively. One of the most 
striking features is the relaxation peak corresponding to the inflexion point 
of the Tf vs. T curve in the heating section. Increasing the aging time 
increases the area under the relaxation peak. Surprisingly, however, the 
temperature at the maximum decreases with the aging time; this unexpected 
result is in contradiction with most experimental observations, although it 
has been reported for B203 [2]. The usual dependence is illustrated in Fig. 8 
by our own experimental results on amorphous selenium. This problem 
merits closer examination. The calculated evolution of the temperature at 
the maximum of the relaxation peak, T,,, versus either S(t) or In t is shown 
in Fig. 9. It can be deduced that evolution is faster for higher annealing 
temperatures, although in this case the magnitude of the total shift in Tgm is 
smaller. These last conclusions are in agreement with the observed experi- 
mental results, in spite of the reversed evolution of Tgm. 

To test the model more stringently, we analyze quantitatively the complex 
cyclic experiment including an isothermal hold. We now attempt to simulate 
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Fig. 8. Heat capacity CP versus temperature in the region of Tg after different elapsed times 
at 296 K. Experimenti results cmrespond to amorphous selenium. 

the behavior of a sample of amorphous selenium annealed for 115 h at 
TV = 279 IS. The best fit was obtained with E = 2.75 eV/at, but the obtained 
result was far lower than expected. Figure IO shows the experimental 
rel~a~on peak beside the simulated ones, and it can be seen that the height 
of the calculated mourn for 115 h is smaller and has an aspect ratio very 
different from the observed maximum. The same holds for the peak calcu- 
lated with an annealing time of 720 h. In fact, we have needed to simulate an 
annealing time of 1248 h at 279 K in order to get a similar height. 

300Y 296K 2SOK 280K 

Fig. 9. Evolution of the temperature at the maximum of the relaxation peak, T,,, versus 
either s(t) cw In 1. Caiculations based on T = 7(T). 
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Fig. 10. Heat capacity Cp versus temperature in the region of Tg. (- 
result corresponding to amorphous selenium annealed for 115 h at 
Computer simulations based on T = T(T) for several annealing times. 

- - - - -) Experimental 
TV = 279 K. (-) 

Nevertheless, this calculated peak is broader than those observed on both 
sides, ascending and descending. 

From the above results we conclude that this simple model, where r 
accounts only for a pure thermal dependence, can yield very useful informa- 
tion about the main qualitative features of enthalpic relaxation. The model 
fails, however, to explain the sense in the shift of the relaxation peak with 6; 
in this respect all the r = r(T) models appearing in the literature [6] fail 
also. Indeed, the inadequate correlation between some experimental results 
and the quantitative predictions of the model leads one to infer that the 
nonlinearity in the approach to equilibrium cannot be ruled out for these 
supercooled and far from equilibrium glasses. 

4. COMBINED THERMAL AND STRUCTURAL DEPENDENCE 

4.1 The necessity of a configuration-dependent relaxation time 

Up to now we have limited ourselves to the study of the simple relaxation 
time r = r(T). The treatment which follows concerns the general form 
7 = T( T, 6) of the Narayanaswamy relaxation time. On inserting this relaxa- 
tion time into the Kovacs relationship we obtain the equation 

-d&/dT= ACP + 

r0 exp(xE/kT) exp[(:- x)E/k( T+ &)] * ’ 
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The numerical integration of the above equation was carried out accord- 
ing to a method suggested by Alegria et al. [23]: calculations started with 
6 = 0 at a high enough temperature to give &T, 0) < 10P4. In this way the 
equilibrium is attained in a short time. The temperature was changed in 
steps AT and 7 was ‘fixed at the starting value during the corresponding 
time t = AT/q. Values of 8 at the end of the step were calculated according 

:T+ AT) = ACPq,(T){exp[-t/T(T)] - l} + S(T) exp[ -t/T(T)] 

The last expression was obtained by analytic integration of the Kovacs 
equation. The new value of 7, obtained at T + AT together with S( T + AT), 
is taken as the starting value for the following step. Values of 8 and r at the 
low temperature end, TV, are the starting values for the isothermal stage 
(during the time of conservation tiso). In practice, the annealing time is 
subdivided in short time steps At in order to consider r constant. Therefore, 
at the end of each interval we have 

s(t+At)=a(t) exp[-At/T(t)] 

4.2 Simulations based on r = r(T, 8) 

The set of parameters and the starting values used in these simulations 
were the same as in the previous model, besides the partition factor x = 0.8 
(unless we indicate to the contrary). 

Figures 11 and 12 show the Tf versus T plots for the same cyclic 
experiment as illustrated in Figs. 5 and 6 for the first model. One can see 

t Tf(K) 

330. 

320. 

31O- 

300.. T(K) 

250 300 310 320 330 340 

Fig. 11. Fictive temperature vs. temperature. Computer simulations of rapid-rapid and 
slow-slow processes based on T = T(T, 6). 
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Fig. 12. Fictive temperature vs. temperature. Computer simulations of rapid-slow and 
slow-rapid processes based on r = T(T, 6). 
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Fig. 13. Temperature dependence of the heat capacity C’ in the glass transition range. The 
simulated experiments were performed with the usual parameters of Table 1 and for several 
values of the partition parameter X. The cycles were performed without isothermal treatment. 
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that the qualitative results are very similar to those obtained previously, but 
quantitatively some differences exist. 

(i) The calculated constant Tf values, corresponding to q, are smaller. 
This result indicates a larger inertia of the system to depart from equilibrium 
than in the x = 1 case. 

(ii) The approach towards equilibrium when the sample is reheated is 
faster than in the previous case (i.e., the magnitude of the overshoot is 
greater). 

These observations seem to indicate the increasing importance of the 
apparent forces which equilibrate the system as x decreases. 

Figure 13 illustrates the changes produced in the relaxation peak when the 
partition parameter x is modified about some values. Sharper peaks are seen 
to be characteristic of smaller values of x, corresponding to larger nonlinear- 
ities (i.e., a stronger dependence with the st~~ture). 

It is interesting to study the shift of the relaxation peaks with the 
annealing time or the departure from equilibrium, S. Figure 14 shows that 
for x = 0.8 all the cyclic experiments give an initial stage of reversed 
evolution beyond which the shift fits the real behavior. Nevertheless, for 
x = 0.5 the shift is correct during the entire experiment. We think that this is 

t 

5 
32.. 

321-. 

320.. 

Fig. 14. Evolution of the temperature at the maximum of the relaxation peak, Ts,,,, versus 
S(t). Computer calculations based on T = T(T, S) for several annealing temperatures and 
different values of the partition parameter x. 
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Fig. 15. Heat capacity C, versus temperature in the region of TR for an annealing time of 115 
h at TV = 279 K. (- - - - - -) Expe~mental result for amorphous selenium. ( -) Computer 
simulation based on T = T(T, 6). 

an important result which allows us to attribute the observed direction of 
the shift to nonlinear effects during the approach to equilibrium. 

Finally, Fig. 15 displays the same simulation of the full cyclic experiment 
with ti, = 115 h and T, =I 279 K which was referred to in Fig. 10. A 
reasonable agreement was found for E = 2.7 eV/ at and x = 0.75. The key 
appears to lie in the mentioned ability of the model allowing for sharper 
peaks than for the x = 1 model. 

5. CONCLUSIONS 

Many features of the glass transition phenomena may be described 
satisfactorily in terms of the phenomenological model of Kovacs including 
the Narayanasw~y relaxation time. When this approach is applied to 
samples of amorphous Se, the enthalpy relaxation can be interpreted by 
means of kinetic parameters such as relaxation times or apparent activation 
energies. If we adopt the value x = 1 for the partition factor in ~(7’, S), we 
are concerned with the pure thermal dependence model, T = r(T). The 
preliminary analysis of this model allows us to emphasize some theoretical 
aspects which are not likely to be recognized in more complex models. The 
model calculations demonstrate that the temperature location and height of 
the enthalpy relaxation peak are closely related to the activation energy E 
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and the partition factor X, respectively. The simulations of the shift of the 
relaxation maximum with 6 show the importance of the structural contribu- 
tion to the relaxation time in real processes. 

However, the use of a single relaxation time can give only an approximate 
account of a complex relaxation, particularly in the glassy state. The most 
severe limitation consists in the inadequacy to describe the memory effects 
currently observed around Tg. Further work, allowing for a deeper insight 
into enthalpy relaxation, is afforded by considering a distribution of relaxa- 
tion times, and will be reported as a continuation to this paper. 
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