Note

Three-component compounds in the system Ge–Te–O and some of their properties

G.G. Gospodinov

Department of Inorganic Chemistry, Higher Institute of Chemical Technology, Burgas (Bulgaria) (Received 31 January 1991)

INTRODUCTION

Attempts to obtain tellurites of germanium in an aqueous medium have not been described so far. Studying the temperature composition projection of the state diagram of the system $\text{GeO}_2-\text{TeO}_2$ [1], it was found that no compounds were formed in the system. In ref. 2, however, it is reported that germanium tellurite with composition $\text{Ge}(\text{TeO}_3)_2$ has been synthesized. Therefore the question of the existence of tellurites of germanium still stands open. This work presents the results of a study of the interactions in the three-component system $\text{GeCl}_4-\text{Na}_2\text{TeO}_3-\text{H}_2\text{O}$ at 100 °C by the solubility method [3] and by measuring pH [4].

EXPERIMENTAL

The concentration of GeCl_4 in the initial solutions was 0.025 mol 1^{-1} . The titre of these solutions was determined by means of mannitol using the technique from ref. 5. The concentration of Na₂TeO₃ in the precipitating solutions, determined by the bichromatic method [6], in each sample was such that the molar ratio between the concentration of TeO₃²⁻ and Ge⁴⁺ ranged from 0 to 5.

The samples were prepared by adding 50 ml of a solution of Na₂TeO₃ to 50 ml of a solution of GeCl₄. They were thermostatted at 25°C for 24 h, then they were placed in "Razotherm" glass ampoules, sealed and kept in an air thermostat at 100 ± 0.1 °C until they had attained equilibrium.

The time needed to attain chemical and crystallo-optical equilibrium was studied as in ref. 7. The experimental technique used to perform X-ray phase analysis, pH-metric, crystallo-optical and thermal analyses has also been described in ref. 7.

The concentration of Ge^{4+} and TeO_3^{2-} ions in the equilibrium solutions was determined, and the solubility isotherm was drawn. The equilibrium solutions were also used to determine pH and to draw a plot with coordinates pH-*n*. The composition of the solid phases was determined (a) by the

Fig. 1. Solubility for the GeCl₄-Na₂TeO₃-H₂O system at 100°C.

solubility isotherm and the dependence of pH on the mole ratio of TeO_3^{2-} to Ge^{4+} , (b) using the concentration of the unreacted ions in the mother solutions, (c) by chemical preparative analyses of the unwashed solid phases [8] and (d) by chemical, crystallo-optical and X-ray phase analyses of the washed and dried solid phases.

In studying the system $\text{GeCl}_4-\text{Na}_2\text{TeO}_3-\text{H}_2\text{O}$ at 100 °C, it was found that the residual concentration curves had a minimum at n = 2 (Fig. 1). Chemical preparative, chemical and crystallo-optical analyses showed that at n = 0.2-2 crystals of germanium tellurite with composition Ge(TeO₃)₂ are obtained, containing 24.58% GeO₂ and 75.43% TeO₂ (calculated: GeO₂ 24.68%; TeO₂ 75.32%). The presence of that compound was proved also by recording the pH of the equilibrium solutions as a function of the mole ratio between the components ($n = \text{TeO}_3^{2^-}$: Ge⁴⁺) (Fig. 2). Furthermore, using the above methods, we found that another compound with composition Ge(TeO₃)₂ · 0.5H₂O was formed at n > 2. Chemical analysis showed that the

Fig. 2. pH dependence of the molar ratio Na₂TeO₃: GeCl₄.

No.	Ge(TeO ₃) ₂		$Ge(TeO_3)_2 \cdot 0.5H_2O$		
	$\overline{I/I_1}$	d (Å)	$\overline{I/I_1}$	d (Å)	
1	9	8.5880	9	7.6280	
2	48	5.2154	100	5.6802	
3	12	4.1713	14	5.0107	
4	13	3.7697	2	3.8667	
5	7	3.7078	95	3.3022	
6	67	3.4796	4	2.6905	
7	30	3.3264	3	2.4422	
8	21	3.2318	45	2.2064	
9	25	3.1754	2	1.9729	
10	100	3.0480	3	1.8554	
11	7	2.5707	3	1.7217	
12	16	2.4358	3	1.6556	
13	23	2.1609	2	1.5166	
14	12	1.9217			
15	70	1.8953			
16	47	1.8589			
17	12	1.7127			
18	28	1.6751			
19	12	1.5302			
20	18	1.5055			
21	18	1.4924			

TABLE 1X-ray data of germanium tellurites

Fig. 3. Derivatogram for $Ge(TeO_3)_2$.

Fig. 4. Derivatogram for Ge(TeO₃)₃·0.5H₂O.

compound contains 24.21% GeO₂, 73.68% TeO₂ and 2.12% H₂O (calculated: GeO₂ 24.17%, TeO₂ 73.75% and H₂O 2.08%).

The synthesis of $\text{Ge}(\text{TeO}_3)_2$ at a mole ratio *n* of the components from 0 to 2 and the synthesis of $\text{Ge}(\text{TeO}_3)_2 \cdot 0.5\text{H}_2\text{O}$ at a ratio *n* of $\text{TeO}_3^{2^-}$: Ge^{4+} where n > 2 were also confirmed by X-ray analysis (Table 1).

The thermogram of $Ge(TeO_3)_2$ (Fig. 3) has one endothermic peak at 670 °C. The peak is reversible and visual observation shows that it is due to melting of the compound. Thermal decomposition begins at 780 °C but is insignificant. At 980 °C (the highest temperature to which $Ge(TeO_3)_2$ was heated) the weight loss due to decomposition is about 2.5%.

Figure 4 shows the thermogram of Ge(TeO₃)₂ · 0.5H₂O. Dehydration takes place in two stages, at 125 °C and 167 °C. According to chemical analysis data, the product after heating to 200 °C contains 24.72% GeO₂ and 75.29% TeO₂. This composition corresponds to anhydrous Ge(TeO₃)₂. The endothermal effect at 452 °C is due to the monotropic polymorphous transition of α -Ge(TeO₃)₂ into high temperature β -Ge(TeO₃)₂. The β -Ge(TeO₃)₂ melts at 620 °C (this corresponds to the last endothermic peak) and begins to decompose slightly at 840 °C. At 980 °C (the final heating temperature) only 2–2.5% of the tellurite is decomposed.

REFERENCES

- 1 Y. Dimitriew, E. Kaschieva and E. Gurov, Mater. Res. Bull., 11 (1976) 1397.
- 2 O.K. Chtanov, V.P. Zlomanov and L.L. Doudkin, Khimiya i Fizika Chalkogenidov, Naukova Dumka, Kiev, 1977, p. 82.
- 3 I.V. Tananaev, Izv. Sekt. Fiz.-Khim. Anal. Inst. Obshch. Neorg. Khim., Akad. Nauk SSSR, 20 (1950) 227, 277.
- 4 I.V. Tananaev and N.V. Mzaurechvili, Zh. Neorg. Khim., 1 (1956) 2216, 2231.
- 5 G. Schwarzenbach and H. Flaschka, Kompleksonometricheskoe Titrovanie, Khimiya, Moscow, 1970.
- 6 S.Yu. Fainberg and N.A. Filippova, Analiz Rud Zvetnich Metalov, Metalurgizdat, Moscow, 1963.
- 7 G.G. Gospodinov, Thermochim. Acta, 91 (1985) 357.
- 8 E.V. Margoulis, E.D. Meletina and L.I. Beisekeeva, Zh. Neorg. Khim., 10 (1965) 1481.