# Excess enthalpies for binary mixtures formed by 2,5,8,11-tetraoxadodecane with homologous *n*-alkanes

Teresa Treszczanowicz<sup>1</sup>, Luo Wang, George C. Benson and Benjamin C.-Y. Lu

Department of Chemical Engineering, University of Ottawa, 770 King Edward Avenue, Ottawa, Ontario K1N 9B4 (Canada)

(Received 15 February 1991)

#### Abstract

Excess enthalpies, measured at 298.15 K, are reported for binary mixtures of 2,5,8,11-tetraoxadodecane with some homologous *n*-alkanes from C<sub>7</sub> to C<sub>12</sub>. The excess enthalpies are positive with maximum values between 1.7 and 2.3 kJ mol<sup>-1</sup>, located near the equimolar concentration. Use of the Flory theory to correlate the data is examined.

## INTRODUCTION

A recent paper [1] from our laboratory presented (among other data) excess volumes for binary mixtures of 2,5,8,11-tetraoxadodecane (TODD) with *n*-heptane, *n*-octane, *n*-decane and *n*-dodecane. The present paper describes measurements of the excess enthalpies of the same set of mixtures. The data resulting from these studies should be useful in modelling the thermodynamic properties of polyethylene glycol dimethyl ether + n-alkane mixtures using equation of state theories.

### EXPERIMENTAL

TODD from the Aldrich Chemical Co. with a stated purity of 99 mol.% was stored over molecular sieve beads (Type 4A) and used without further purification. Its density at 298.15 K, determined in an Anton-Paar densimeter, was 980.57 kg m<sup>-3</sup>. The samples of the *n*-alkanes were the same as used in our previous work [1].

Excess molar enthalpies,  $H_m^E$ , were determined in an LKB flow microcalorimeter (Model 10700-1) thermostated to  $\pm 0.002$  K at 298.15 K. Details of the equipment and its operation have been described previously [2,3].

<sup>&</sup>lt;sup>1</sup>Visiting scientist from the Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., Warszawa 01-224, Poland.

| Y             | HE             |        | HE     | Y      | нE     | ~      | HE     | ~~~~   | HE     |
|---------------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
| ~             | **m            | ~      | m      | ~~     | **m    | л<br>  | 11m    | ~      | 11 m   |
| n = 7         |                |        |        |        |        |        |        |        |        |
| 0.0500        | 477.5          | 0.2492 | 1482.0 | 0.4450 | 1717.6 | 0.5995 | 1548.8 | 0.7506 | 1030.5 |
| 0.0999        | 846.5          | 0.2997 | 1606.5 | 0.4451 | 1714.3 | 0.6497 | 1421.7 | 0.7998 | 790.9  |
| 0.1498        | 1105.5         | 0.3496 | 1672.8 | 0.4995 | 1717.4 | 0.6993 | 1258.9 | 0.8504 | 620.8  |
| 0.2014        | 1322.6         | 0.3994 | 1703.1 | 0.5496 | 1636.1 |        |        |        |        |
| n = 8         |                |        |        |        |        |        |        |        |        |
| 0.1000        | 912.8          | 0.3499 | 1800.8 | 0.4502 | 1864.8 | 0.5999 | 1778.8 | 0.7002 | 1539.0 |
| 0.1500        | 1192.2         | 0.3500 | 1802.4 | 0.4999 | 1883.7 | 0.5999 | 1780.8 | 0.7499 | 1363.8 |
| 0.1999        | 1408.8         | 0.4000 | 1852.2 | 0.5000 | 1888.4 | 0.6500 | 1701.7 | 0.8000 | 1182.6 |
| 0.2501        | 1581.7         | 0.4500 | 1874.4 | 0.5498 | 1845.0 | 0.7001 | 1568.3 | 0.9001 | 637.7  |
| 0.2998        | 1706.7         |        |        |        |        |        |        |        |        |
| n = 10        |                |        |        |        |        |        |        |        |        |
| 0.0500        | 501.8          | 0.2997 | 1878.5 | 0.5053 | 2111.1 | 0.6352 | 1971.6 | 0.7499 | 1652.2 |
| 0.1000        | <b>922</b> .1  | 0.3499 | 1992.3 | 0.5343 | 2100.4 | 0.6499 | 1919.4 | 0.8002 | 1434.7 |
| 0.1499        | 1272.6         | 0.4007 | 2059.7 | 0.5456 | 2078.0 | 0.6828 | 1845.3 | 0.8506 | 1161.5 |
| 0.1995        | 1523.1         | 0.4508 | 2104.3 | 0.5873 | 2048.1 | 0.6997 | 1804.9 | 0.8999 | 843.0  |
| 0.2504        | 1717.8         | 0.4958 | 2110.1 | 0.5998 | 2029.5 | 0.7306 | 1694.2 | 0.9500 | 435.8  |
| <i>n</i> = 12 |                |        |        |        |        |        |        |        |        |
| 0.0500        | 479.4          | 0.3536 | 2100.3 | 0.4964 | 2212.8 | 0.5981 | 2142.6 | 0.7490 | 1804.3 |
| 0.0997        | 904.1          | 0.3962 | 2157.1 | 0.4998 | 2218.4 | 0.6003 | 2159.2 | 0.7994 | 1593.9 |
| 0.1510        | 1282.5         | 0.3994 | 2177.5 | 0.5497 | 2202.2 | 0.6466 | 2046.7 | 0.8999 | 928.1  |
| 0.2499        | 1822.5         | 0.4508 | 2203.0 | 0.5499 | 2201.7 | 0.6923 | 1943.1 | 0.9500 | 529.6  |
| 0.2998        | 1 <b>971.3</b> | 0.4510 | 2211.1 |        |        | -      |        |        |        |

Experimental results for excess molar enthalpies  $H_m^E$  (J mol<sup>-1</sup>) of xCH<sub>3</sub>(OCH<sub>2</sub>CH<sub>2</sub>)<sub>3</sub>OCH<sub>3</sub> + (1-x)C<sub>n</sub>H<sub>2n+2</sub> mixtures at 298.15 K

Some difficulties were experienced in achieving thorough mixing when the normal total flow rate  $(5.0 \times 10^{-9} \text{ m}^3 \text{ s}^{-1})$  was employed. It was found necessary to operate at a reduced flow rate of  $7.5 \times 10^{-10} \text{ m}^3 \text{ s}^{-1}$  to obtain reproducible results. Over most of the mole-fraction range, the errors in  $H_m^E$  and the mole fraction x are estimated to be less than 1% and  $5 \times 10^{-4}$ , respectively.

#### **RESULTS AND DISCUSSION**

The excess molar enthalpies of  $x CH_3(OCH_2CH_2)_3OCH_3 + (1 - x)$  $C_nH_{2n+2}$  mixtures at 298.15 K are listed in Table 1 for n = 7, 8, 10 and 12, and are plotted in Fig. 1. The smoothing function

$$H_{\rm m}^{\rm E} \left( {\rm J} \; {\rm mol}^{-1} \right) = x \left( {1 - x} \right) \sum_{j=1}^m h_j \left( {1 - 2x} \right)^{(j-1)} \tag{1}$$

TABLE 1



Fig. 1. Excess molar enthalpies,  $H_m^E$  (kJ mol<sup>-1</sup>), for  $xCH_3(OCH_2CH_2)_3OCH_3 + (1 - x)C_nH_{2n+2}$  mixtures at 298.15 K. Experimental results: O, n = 7;  $\Delta$ , n = 8;  $\Box$ , n = 10,  $\diamond$ , n = 12. Curves: ——, least-squares representation by eqn. (1); — —, calculated from the Flory theory with  $X_{12}$  given by eqn. (3).

was fitted to the results for each mixture. Values of the coefficients,  $h_j$ , determined by a least-squares analysis with all points weighted equally, are given in Table 2, together with the standard deviations s of the representations. Curves calculated from eqn. (1) are shown in Fig. 1.

The excess molar enthalpies of the present systems are positive at all mole fractions. The curves in Fig. 1 are nearly symmetric about x = 0.5 and, as in

TABLE 2

Coefficients,  $h_j$ , and standard deviations, s, for representations of  $H_m^E$  (J mol<sup>-1</sup>) for  $x CH_3(OCH_2CH_2)_3OCH_3 + (1-x)C_nH_{2n+2}$  mixtures at 298.15 K by eqn. (1)

| n  | <i>h</i> <sub>1</sub> | h <sub>2</sub> | h <sub>3</sub> | h <sub>4</sub> | h <sub>5</sub> | s    |
|----|-----------------------|----------------|----------------|----------------|----------------|------|
| 7  | 6797.0                | 1665.3         | - 222.0        | 2598.1         |                | 16.1 |
| 8  | 7509.7                | 611.3          | 1614.3         | 1894.9         |                | 10.6 |
| 10 | 8432.2                | 385.5          | 2151.9         | 342.0          |                | 9.5  |
| 12 | 8858.7                | 352.0          | 3312.5         | - 963.4        | - 1610.6       | 13.6 |

the case of the excess molar volumes [1], the maxima increase with increasing chain length of the *n*-alkane.

Excess molar enthalpies at 298.15 K have been reported previously for TODD + *n*-heptane [4] and for TODD + *n*-dodecane [5]. In the case of the mixture with *n*-heptane, our results agree reasonably well with those of Marongiu et al. [4]: for an equimolar mixture, the difference is  $\approx 5 \text{ J mol}^{-1}$ . However, the present results for the mixture with *n*-dodecane are all significantly higher than those published previously [5]; for an equimolar mixture, the difference is  $\approx 220 \text{ J mol}^{-1}$ . In view of the difficulties noted in the preceding section, it is possible that the discrepancies can be attributed to incomplete mixing in the earlier work.

In studying the excess volumes of the present systems [1], it was found that the results could be correlated reasonably well by the Flory theory [6,7] with the interchange-energy parameter,  $X_{12}$ , expressed by the linear function

$$X_{12} (\text{J cm}^{-3}) = 65.0054 - 0.4299n$$
<sup>(2)</sup>

Using this relation and the values of the characteristic pressures, volumes and temperatures given in ref. 1, yields estimates of  $H_m^E$  which are considerably higher than the observed values: at x = 0.5, the discrepancies are 453, 361, 259 and 246 J mol<sup>-1</sup> for the systems with n = 7, 8, 10 and 12, respectively.

In contrast to eqn. (2), values of  $X_{12}$  adjusted to give the best overall fit of the Flory formula for  $H_m^E$  to each system separately tend to increase with n, and are approximated by the function

$$X_{12} (\text{J cm}^{-3}) = 41.3717 + 1.3278n$$
 (3)

 $H_{\rm m}^{\rm E}$  curves calculated from the Flory theory using  $X_{12}$  values given by eqn. (3) are shown in Fig. 1. The discrepancies between the theoretical and experimental curves are considerably less than when eqn. (2) is used. This behaviour is not unusual, as it is often found that Flory analyses of excess enthalpy and excess volume data lead to different values of  $X_{12}$ .

## ACKNOWLEDGEMENTS

The authors are indebted to the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support of this work. The contribution of one of us (T.T.) is part of Research Project CPBR 3.20 of the Polish Academy of Sciences.

#### REFERENCES

- 1 T. Treszczanowicz, G.C. Benson and B.C.-Y. Lu, Thermochim. Acta, 168 (1990) 95.
- 2 R. Tanaka, P.J. D'Arcy and G.C. Benson, Thermochim. Acta, 11 (1975) 163.
- 3 F. Kimura, G.C. Benson and C.J. Halpin, Fluid Phase Equilibr., 11 (1983) 245.

- 4 B. Marongiu, S. Dernini, L. Lepori, E. Matteoli and H.V. Kehiaian, J. Chem. Eng. Data, 33 (1988) 118.
- 5 G.C. Benson, M.K. Kumaran, T. Treszczanowicz, P.J. D'Arcy and C.J. Halpin, Thermochim. Acta, 95 (1985) 59.
- 6 P.J. Flory, J. Am. Chem. Soc., 87 (1965) 1833.
- 7 A. Abe and P.J. Flory, J. Am. Chem. Soc., 87 (1965) 1838.