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Abstract 

An approach is presented that employs the dual split kinetic model in studying the 
energy barrier between two states of a conformer of a macromolecular chain. 

INTRODUCTION 

The traditional equation describing the elementary jump between two 
states of the inter-intra potential energy barrier of a “three-bond element” 
of a macromolecular chain, defined as t + cg (trans-cis/gauche), can be 
modified to include coupling between kinetic and energetic constraints, 
resulting in a totally new statistical approach to rate dependent processes, 
and in particular to the problem of the interaction between parts of 
macromolecules, the conformers. The originality of the new approach 
resides in the dual split kinetic assumption which makes coupling possible. 
The justification for the use of dual kinetics, and for the creation of such 
statistics, comes from the duality of the conformers to belong to macro- 
molecules and to an inter-molecular network of interactions. 

The dual split kinetic model originates from the following considera- 
tions. For a closed system, integration of the traditional set of kinetic 
equations describes the whole system, including the value of its free energy, 
at any time or temperature. The free energy change, which reflects the 
departure from equilibrium, plays a very subordinate role in this case, as its 
magnitude is determined entirely by the kinetic variables. For instance, it is 
not certain that the free energy is at its minimum value, at all times, when 
the solution is derived from the integration of kinetic equations. Yet, the 
value of the minimum free energy at any given temperature is known: it is 
the equilibrium value at that temperature. When the system is brought out 
of equilibrium, and then allowed to relax, the kinetic equations drive the 
system back to the equilibrium state, which implies that the value of the 
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equilibrium free energy is implicit in the formulation of the kinetic con- 
stants. In fact, the ratio of the two kinetic constants is equal to the 
thermodynamic constant, a quantity which gives the partition function for 
the two energy levels at equilibrium. However, under non-isothermal 
conditions, the free energy of the system is not equal to its minimum 
(equilibrium) value when the solution is driven by kinetic considerations 
only. The question is as follows: can we modify the set of equations driving 
the kinetics so that the free energy of the system stays at its minimum value 
at all times? The dual split kinetic model describes a new set of kinetic 
equations that fulfil these conditions. It is assumed that there is a split for 
each state (cgF, cgB, tF and tB) resulting in a dual partition, between cg 
and t on one hand, and between F and B on the other hand. In this work, 
the laws which govern the new statistics were studied and the statistics 
applied to the case of the potential well for macromolecules’ conformers. 
The new equations converge to traditional kinetic equations at long times 
or under “true” equilibrium conditions. Under non-isothermal conditions, 
the system becomes self-dissipative, and the duality is responsible for a 
structure of the free energy. The duality is the source of an interesting 
fractalian phenomenon: the “dual partition” between the F states and the 
B states varies in a kinetically controlled manner, just as the kinetics 
between the cg states and the t states vary, albeit with a different set of 
kinetic constants. It is as if the coupling between the kinetic and energetic 
constraints could be described in terms of a kinetic equation or, switching 
things around, as if kinetic equations were the result of coupling between 
an energy equation and another kinetic equation: this self-generated kinet- 
ics is reminiscent of Fractalian phenomena, and could be designated 
“Fractalian thermokinetics”. This is as if the system has embedded a 
description of its origins, albeit with other set of contants, in the dynamism 
which controls its variance. When we vary the energy gap between the two 
levels t and cg, the self-created kinetic function also varies, and the kinetic 
parameters (frequency front factor and enthalpy of activation) are coupled 
in a law of compensation. The question is raised whether the kinetic 
response observed when studying polymers corresponds to- the “source” 
kinetic equation from which the dual split kinetic scheme was derived or to 
the “by-product” kinetic equation which seems to be a self-created image 
of the inner mechanism. In any case, by choosing the second alternative, 
compensation phenomena in polymers could be interpreted with correla- 
tion to the potential energy barrier giving rise to the multiplicity of jumps 
between ti and Cgi. 

THE DUAL SPLIT KINETIC MODEL 

Consider a simple kinetic scheme such as a first-order reversible acti- 
vated state process t + cg. If the direct and reverse kinetic constants are k, 
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and k,, respectively, and they are assumed to depend on temperature in an 
Arrhenius fashion, the following elementary set of kinetic and thermody- 
namic equations describe the evolution of the system 

dn,/dr = -kp, + k2( B, - n,) 

dn,,/dt = -k,n, + k,( B, - ncg) (1) 

where B, = (n, + n,J and is the total number of units in the state energy 
levels t and cg, and 

k, = v,,, exp( -A,/k,T) 

and 

k, = vm exp( - A,/k,T) 

where v,,, is the frequency front factor and k, is Boltzman’s constant. 

AG = AG, + k,T ln(n,/n,,) 

AG, = k,T ln(n,,/n,) = k,T ln(k,/k,) = (A1 - A*) = 28, 

where the subscript e in IZ~,, ncge denotes the equilibrium value. 
When the total number of units in the two levels is constant, the 

statistics apply to a closed thermodynamic system. 
If the system is cooled at a constant cooling rate q = dT/dt, the now 

non-linear system of the above differential equations can easily be solved, 
for instance with a Runge-Kutta fifth-order algorithm, to produce at each 
temperature a set of IZ, and nCg values which can be compared to those of 
the equilibrium at the same temperature, in order to determine the 
effective departure from equilibrium due to non-isothermal cooling. 

It should be noted that in the equation which gives the free energy, the 
term in(n,/n,,) reflects the departure of the free energy from its equilib- 
rium value, and that IZ, and nCg are determined by solving the kinetic set. 
Therefore, under non-isothermal conditions, the free energy plays a very 
subordinate role and its magnitude is driven by the kinetic aspect. As 
already mentioned in the introduction, it is precisely this assumption which 
I propose to change in order to produce a kinetic theory which is not solely 
kinetic but which also includes the free energy as one of the driving forces. 

If the total number of units B, could vary, the system would no longer 
be closed. Looking at eqns. (11, it is straightforward to predict that, under 
these circumstances, the rate of change of B, would have a significant 
effect on the kinetics, especially on the populations n, and nCp. But B, is 
not allowed to vary because the system considered here is a closed one for 
which the total number (n, + ncs) is constant. 

Suppose the total B, population is split into two sets of units, Nb and 
N,, and a sort of intrinsic partition between these two sets is authorized in 
order to create for each set a situation corresponding to the open-system 
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kinetics. Of course, the total population (N,, + N,) = B, remains constant 
and, for this reason, the rate of change of Nb is equal to minus the rate of 
change of Nf 

R,=N,+N, 

R = dN,/dt 

N,=( %b + hgb) 
(2) 

N,= h,+%f) 

It seems logical to assume that under equilibrium conditions Nbe = Nf, = 
R,/2, and that the population of each level is nt& n,&, ntfe and ncgfe, and 
of course &be = n&, ncgbe = nc.&, and ln(ntb&&,e) = ln(ntf&r,&) = 
ln(k,/k,). 

The free energy is equal to 

0.5k,T ln(nt&,/ncgbe) + 0.5k,T ln(n,/Qe) = k,T ln(k,/k,) = 2 Ae 

In the equilibrium state the two types of units become indistinguishable; 
only non-isothermal kinetics will populate them distinctively. 

Consider the following system of equations 

Nb = lztb + nc,b 

Nf = %f + %gf (3) 
BO=(Nb+Nf) 

dn,,/dt = R/2 - k,n,, + k,(N, - nt,,) 

dn,,/dt = -R/2 - k,n,, + kZ(Nf - n,,) 

dN,/dt = R 

k, = v, exp( -A,/T) 

k, = v,,, exp( -AZ/T) 

In the following equations 

ln(ntb/nc,b) + ln(ntf/nc,,) 

q = dT/dt 

(4) 

Boltzman’s constant is equated to 1. 

+ ln( Nb/Nf) = 2 ln( k,/k,) = 4A,,T (5) 

under isothermal relaxation q = 0. 
Note the presence of an additional term ln(N,/N,) in the expression for 

the free energy. This ad hoc assumption finds its justification in the results 
which it yields. The justification will be discussed in future publications. At 
equilibrium, Nbe = Nf, = (B,/2) and, therefore, ln( Nb/Nf) is equal to zero. 

Note also the modification of the kinetic equations, eqns. (4), which now 
include the extra term R/2. This term is introduced to make the different 
rates consistent with the fact that the units belong to one single closed 
system. 
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There is no assumption in eqns. (3)-(S) regarding the variation of 
R(t) = dN,/dt and its temperature dependence: the solutions come di- 
rectly from eqns. (3) and (5). The energetic and kinetic character of the 
new kinetic model is now apparent: the solutions for Q,, n,,,, n,,, ~l,~ and 
Nb are not obtained from a simple kinetic assumption (the expression of 
the kinetic constants and the proportionality between rate and population 
concentration). There is a real interlocking between the energetic con- 
straint (eqn. (5)) and the kinetic constraint (eqns. (3) and (4)). The condi- 
tion regarding energy is nothing other than a minimum principle, as it is 
assumed that the free energy remains that of the equilibrium state at the 
corresponding temperature; a system always evolves towards its minimum 
free energy, thus the minimum value is given by the equilibrium value. 

This new kinetic model is called “the dual split kinetic model”. In the 
following some aspects of the new kinetics driven by eqns. (3)-(5) are 
presented. 

COMPUTER SIMULATIONS 

In this paper I analyse the effect of cooling from a higher temperature 
state, and the effect of annealing after cooling; I also analyse the response 
of systems having different Ae, A,,, and v,. 

Cooling simulation 

Consider a system of B, = 1000 units, with statistics corresponding to the 
following parameters: Ae = 250, A,.,, = 9250, and vm = 1012. Recall that A, 
is equal to (A1 + A2)/2 and Ae is equal to (A1 - A,)/2. Cooling is started 
at a rate of 1 K s-l from an initial temperature T,, = 450 K. The system is 
assumed to be initially at equilibrium at that temperature, so Nb = Nr = 

W2. 
Figure 1 shows a plot of the rate of change of Nb vs. cooling tempera- 

ture. The rate does not remain equal to zero: the rate increases below 350 
K, rapidly at first, goes through a maximum, and decreases back to zero at 
lower temperatures. The result of such a behavior on the kinetics is shown 
in Fig. 2. The variation of ntb or ntf seems very “kinetically controlled” (in 
terms of what is usually observed for “classical” systems), but it can be seen 
that the kinetics for ntb and n,, are different. In addition, a close analysis 
of the kinetic behavior shows that the kinetics of relaxation is more 
complex than a single relaxation mechanism. Figure 3 shows the variation 
of the dual split kinetic term, ln<Nb/Nf), which increases from its equilib- 
rium value of zero to a plateau value at lower temperature. Figure 3 clearly 
demonstrates that the minimum principle of the free energy implies a 
structuring of the b/f states as non-equilibrium cooling proceeds. The 
kinetic variation of It&,, n&b, ntf and n,,, is no longer as simple as a 
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Fig. 1. The rate of change of Nb vs. cooling temperature. 
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first-order kinetic equation would imply (see eqn. (l)), even under isother- 
mal conditions. The b and f systems are interlocked open dissipative 
systems because their individual total number of bonds is not constant, 
although the number of units of the overall system is closed. 

Isothermal annealing 

Figure 4 shows the variation of Nb with time at various temperatures of 
isothermal relaxation. The initial state is obtained from the non-isothermal 
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Fig. 2. The variation of ntb and n,r with temperature. 
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Fig. 3. The variation of the dual split kinetic term l&V,/&) with temperature. 
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cooling solution (see Fig. 2), and the system is allowed to relax according to 
the same set of equations (eqns. (2) and (3)) except that q = dT/dt is now 
zero. Figure 4 demonstrates that N,, decreases to the equilibrium value of 
B,/2 in a “kinetically controlled” manner: the rate of change of Nb is 
dependent on the temperature of isothermal relaxation. As there is no 
specific kinetic assumption regarding the variation of Nb, its temperature 
dependence should reveal the nature of the interlock between the kinetic 
and energetic constraints. Figures 5 and 6 cast some light on this issue. 

If it is attempted to fit the data of Fig. 4 with a first-order kinetic 
expression of the form 

R = dN,/dt = k;N, + k,‘N, (6) 
where ki and kz are kinetic constants, it is found that the fit is excellent 
for ki = kz (with an r* fit equal to 0.9998 for all the relaxation tempera- 
tures). Figure 5 shows a plot of In R vs. ln(N, - NJ for the case of the 
relaxation at 344 K. The plot is linear with slope 1 and intercept ln(k,) = 
1.0051. By varying the temperature the value of ln(k,) for all the isotherms 
can be found. Figure 6 shows a plot of ln(k,) vs. l/T to determine if an 
activation energy and a frequency front factor can characterize the kinetics 
of the variation in Nb. The plot is very linear indeed with an activation 
energy (A,) and a frequency front factor (v,) equal to 9084.70 and 
7.92 x 101’, respectively (r2 = 0.999975). The dual split kinetic model pro- 
duces a structuring of the free energy, as a result of non-equilibrium 
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Fig. 4. The variation of Nb with time at various temperatures of isothermal relaxation: 
A,,, = 9250, Ae = 250, v,,, = 10”. The numbers next to the curves are the relaxation tempera- 
tures (in kelvin). 

cooling, which kinetically behaves as a rate process with an activation 
energy and jump frequency that are easily derivable, but different, from the 
kinetic parameters of the main statistics. It is this remarkable result which 
suggests that what is being dealt with here is “fractalian thermokinetics”. I 
use the terminology “fractalian”, although it might not be entirely clear at 
this stage why this behavior is compared with a fractal. Such a discussion is 
beyond the scope of this paper, but it has to do with considering time and 
free energy as Fractalian entities. The dual split kinetics concept described 
here can be applied at several levels of a ladder structure representative of 
phenomena occurring in relation to one another but at different scales. 
Energetic kinetic coupling laws create the ladder and the various time 
frames. Time, measured as the integral of events of a certain duration, has 
to be referenced to the appropriate scale within the ladder structure and, 
as such, it is a fractalian variable. In using eqn. (6) to fit the curves of the 
results of eqns. (3)~(51, it is as if the coupling between the kinetic and 
energetic constraints could be described in terms of a kinetic equation or, 
switching things around, as if the kinetic equations were the result of 
coupling between an energy equation and another kinetic equation: this 
self-generated kinetics is reminiscent of chaos-fractalian phenomena, like 
in the Cantor set. This is as if the system has embedded a description of its 
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Fig. 5. Plot of In R vs. InWb - IV,) for isothermal relaxation at 344 K: A, = 9500, 
A, = 9000, vm = 1012. 

origins, albeit with another set of constants, in the dynamism which 
controls its variance. 

Going back to simpler considerations, one can now write 

dN,/dt = V, exp(A,/T)(2B, - Nb) (7) 

and easily solve the variation of IZ,~, nCgb, PZ,~ and n,,, under isothermal 
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Fig. 6. Plot of the dual split kinetic constant In k, vs. relaxation temperature: Am = 9250, 
Ae = 250, v, = 10”. 
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Fig. 7. Normalized compensation plot for Am = 9250, Ae = 5 to 300, v, = loll. 

conditions. Note that the fitting of the variation of N,, with an activated 
kinetic equation cannot be correct at the initiation of the non-equilibrium 
process, and it only applies after the system has evolved to a steady 
solution. The reason for this is that eqn. (7) would continuously yield 
N,, = Nr = B,/2 if one starts from the equilibrium state. Hence the “kinetic 
curve fit” of the solution of eqns. (3)-W by using eqn. (7) can only be true 
in a certain time domain. 

Effect of changing the value of A, 

In the previous sections the kinetics of the jump between two levels 
separated by an energy gap 28, was analyzed. Figures 7-9 present results 
which apply to systems having the same value for V, and A,,,, but a 
different value for A,. For each system the procedure is identical: cool 
from 7’, = 400 K at a given rate, and anneal at various temperatures from 
states obtained during the cooling history. The energetic kinetic system is 
allowed to relax back to its equilibrium state at the corresponding anneal- 
ing temperature, and for each curve the relaxation kinetics are analyzed as 
described before. The ultimate goal is to find the value of vx and A, for 
each system when Ae varies. Figure 7 applies to a system with A, = 9250, 

= 10n, and a variable A chosen between 5 and 300. The variables in 
zgure 7 have been normaliled, i.e. ln(v,/v,> is plotted vs. (A, - A,) but, 
as V, and A, are both constant in this figure, a plot of In vx vs. A, is 
equivalent. The line in Figure 7 is straight: the slope (energy gap) and 
intercept (frequency front factor) of the Arrhenius constants are linearly 
related, which means that the corresponding Arrhenius diagrams of ln(k,) 
vs. l/T (such as in Fig. 6) compensate when Ae varies. In other words, the 
Arrhenius straight lines converge to a single point (the compensation 
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Fig. 8. Normalized compensation plots of the effect of Ae for various A, and v,,, values: 
Ae = 5 to 150. 

point). The slope and intercept of the straight line in Fig. 7, which is called 
a “compensation line” [l], give the coordinate of the compensation point 
[l]. The equation for the line of Fig. 7 is: Y = 0.0012 X + 14.0, which passes 
through the point [In v~, A,] for X = Ae = 0. The compensation line can 
be rewritten as 

(In vx - In v,) = 1.2 x 10e3( Ax - A,) (8) 

The compensation temperature CT,) is equal to [l/slope] of the compensa- 
tion line, i.e here 815 K. However, to be realistic, this value must be 
divided by 2 (cal IS-‘), because of the way the kinetic constants have been 
defined (eqn. (4)), without including the gas constant in the denominator of 

Fig. 9. The three-bond element, a “conformer”. 



the exponential terms, as is normally done (it was normalized to 1 where, in 
order to avoid carrying it around). So, the compensation temperature for 
the system defined by [Y,, A,] is 407 K. The intercept of the compensation 
line gives the y coordinate, ln(k,), 

ln(k,), = - (In vrn - (W&L) 

ln(k,), = - 2.627 for the system studied here (corrected for the gas con- 
stant). 

It is clear that the compensation coordinates, ln(k,), and T,, are a 
function of Am and V~ only, i.e. the coordinates do not vary with A,. 
Therefore, if the coordinates of compensation were known it would be 
possible to compute the value of Am and v~. 

Figure 8 shows the plot of A, vs. ln(v,) for different systems having 
various A, and v,,, and variable Ae. One of the lines in Fig. 8 corresponds 
to the systems in Fig. 7 (square symbols). Figure 8 compares the normalized 
plots for several Am and v,. It can be seen that the compensation 
temperature varies with the value of Am and v,,,. It can also be seen that it 
is possible to obtain the same normalized compensation line, i.e. the same 
temperature of compensation, for different pairs of [A,, vm]. This is the 
case for the lower line in Fig. 8 which shows the data for two different 
systems: Am = 9500, V, = lOi’; and A, = 8750, V, = 1012. So there is 
superposition of the effect of the frequency front factor vrn and the energy 
Am. One important observation is that the sensitivity of the compensation 
line to A, varies with ‘/m and A,. This means that the slope in eqn. (8) 
varies with I/, and A,. Each point of the compensation line can be 
associated with several systems [A,, Am, v,,,]. 

RELAXATION PHYSICS OF THE POLY-CONFORMERS 

Figure 9 is a representation of a rotating elementary “three-bond 
element” for a macromolecular chain. Such a representation is used to 
define the basic structure to which a non-covalent inter-intra molecular 
energy potential of interaction (of the van der Waals’ type) applies. A 
simplified potential contour is sketched in Fig. 10. It can be seen that 
flexed or unflexed conformations are more or less probable, as evidenced 
by the potential energy profile characterizing such a statistical distribution. 
The cis, gauche and trans conformations have different probabilities of 
existence for a given amount of thermal energy. The statistical population 
for the whole set of three-bond elements (belonging or not to the same 
macromolecule) can be governed by statistics described by the dual split 
kinetics presented above. The basic unit of the statistics is called a 
“conformer”. 
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Fig. 10. Variation of the intramolecular potential energy barrier with angle of rotation 8. 

If the various (continuous) energy levels of Fig. 10 correspond to a 
distribution of t + cg energy gaps in the statistics (a situation where Ae is 
varied, at constant A, and v,) and if we further consider that the kinetic 
observation of the compensation phenomena in polymers, especially at the 
glass transition temperature CT’), matches the study of an equation of type 
(7), i.e. the curve-fitting image of a more complex energetic kinetic system, 
then we understand why the kinetic parameters (frequency front factor and 
enthalpy of activation) are related by a law of compensation. This is what is 
experimentally observed for a great number of amorphous macromolecular 
systems at the glass transition temperature (Fig. 11). Pertinent examples 
are given elsewhere [1,2] in another paper in this issue [3]. 

The characteristics of the compensation point vary with a variety of 
parameters susceptible to the influence of the statistical partition function 
represented by the potential energy barrier shown in Fig. 10. The potential 
energy contour is modified by external physical parameters which favor the 
presence of a certain type of conformation. For instance, the trans confor- 
mation is favored by application of a stress or an electrical field in the 
direction parallel to the field gradient, resulting in a distortion of the 
potential energy contour in that direction, which might be expressed, as far 
as the new energetic kinetic statistics is concerned, as a change in either 
A,, or Am and v,.,,, or both. 

It is interesting to note that the compensation phenomena observed in 
polymers by thermally stimulated recovery (TSC/RMA) spectroscopy can 
be described by an equation of type (71, i.e. the “by-product” kinetic 
equation which seems to be a self-created image of the interlocking 
mechanism between the energetic and kinetic constraints. The compensa- 
tion phenomena in polymers can be interpreted by referring to the poten- 
tial energy barrier describing the inter-intra molecular interaction between 



300 320 340 360 T(K) 

-2 
Tc =376K 

- r, = 2.5 x lo-Lc 

-3 - 

-4 1 
3.50 3.25 3.00 

1000/-f(K) 

Fig. 11. Relaxation map analysis for Nylon 66. 

conformers, and giving rise to the multiplicity of jumps between ti and cgi. 
The justification for the use of dual kinetics, and for the creation of such 
statistics, comes from the duality of the conformers to belong to macro- 
molecules and to an intermolecular network of interactions. 

In reality, the situation is more complex, as explained in a companion 
paper to this one [4]. The dual split kinetic scheme is part of a structuring 
process which dictates the evolution of the state of interaction between the 
conformers gathering as an “energetic kinetic network” (EKNET), a statis- 
tical grand ensemble. Dual split kinetics applies to individual systems, and 
contributes to the “vertical structuring”, which describes how macroscopic 
changes are transmitted to microscopic and smaller scales. But another 
type of structuring can occur to comply with the minimum principle of the 
total free energy. Energetic kinetic systems can be self-generated by the 
energetic kinetics: I have called this mechanism “cloning” or “horizontal 
structuring”, and it is described in the companion paper [4]. It is stipulated 
that the existence of the horizontal network of cloned systems is responsi- 
ble for the observation of multiple compensation phenomena in single-phase 
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amorphous polymeric materials [51. All in all, it is stipulated that the 
relaxation behavior of polymeric systems can be understood using the dual 
split kinetics of this energetic kinetic network of “poly-conformers”. 
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