# EXCESS ENTHALPIES OF BINARY MIXTURES CONTAINING EITHER METHYLCYCLOPENTANE OR METHYLCYCLOHEXANE

Emmerich Wilhelm,<sup>a</sup> A.Inglese,<sup>b</sup> and J.-P.E.Grolier<sup>C</sup>

<sup>a</sup>Institut für Physikalische Chemie, Universität Wien, Währingerstraße 42, A-1090 Wien, Austria

<sup>D</sup>Dípartimento di Chimica, Università di Bari, Campus Universitario, 1-70126 Bari, Italy

<sup>C</sup>Laboratoire de Thermodynamique et Cinétique Chimique, Université Blaise Pascal, F-63177 Aubière, France

#### Abstract

A flow microcalorimeter of the Picker design was used to measure excess molar enthalpies HE at 298.15 K, as a function of mole fraction, of the mixtures methylcyclopentane (c-C5H9CH3) + cyclopentane (c-C5H10), and + methylcyclohexane (c-C6H11CH3), and of methylcyclohexane + n-heptane (n-C7H16), + n-decane (n-C10H22), + cyclopentane, + benzene (C6H6), and + tetrachloromethane (CC14). The calorimeter was equipped with separators and operated in the discontinuous mode. The HEs of the first-named three systems are negative, those of the remaining four are all positive. At equimolar composition,  $HE(x_1=0.5)/J.mol^{-1}$  ranges from -113 for (c-C5H9CH3 + c-C5H10) to + 792 for (c-C6H11CH3 + C6H6).

## 1. INTRODUCTION

In a series of investigations, (1-9) we reported excess molar enthalpies  $H^E$ , excess molar heat capacities  $C_p^E$  at constant pressure, and excess molar volumes  $V^E$  of binary liquid mixtures composed of either a five- or a six-membered cyclic ether and various second components. In order to obtain more information as to the influence of ring size upon thermo-dynamic mixing quantities, we also measured  $H^E$  of mixtures containing either cycloheptane or cyclooctane, (10) and  $C_p^E$  and  $V^E$  of mixtures containing *trans*, *trans*, *cis*-1,5,9-cyclododecatriene. (11) As a sequel to these investigations we present here excess molar enthalpies at 298.15 K of the binary liquid mixtures methylcylopentane (c-C5HgCH3) + cyclopentane 0040-6031/91/\$03.50 © 1991 Elsevier Science Publishers B.V., All rights reserved

 $(c-C_5H_{10})$ , and + methylcyclohexane  $(c-C_6H_{11}CH_3)$ , and of methylcyclohexane + n-heptane  $(n-C_7H_{16})$ , + n-decane  $(n-C_{10}H_{22})$ , + cyclopentane, + benzene  $(C_6H_6)$ , and + tetrachloromethane  $(CCl_4)$ . Contacts were maintained with Kohler's group in Bochum, who also studied the effect of addition of a methyl group to the cyclopentane and cyclohexane ring on excess properties of their mixtures with n-alkanes. (12-15)

## EXPERIMENTAL

All liquids were of the best quality available from Fluka, that is of puriss. quality (n-heptane, cyclopentane, methylcyclopentane, methylcylohexane, benzene, tetrachloromethane) or purum quality (n-decane: olefin free, purity >99%). They were carefully dried with molecular sieve (Union Carbide Type 4A, beads, from Fluka) and stored in the dark.

Excess molar enthalpies  $H^E$  were measured with a flow microcalorimeter of the Picker design (from Setaram) equipped with separators and operated in the discontinuous mode. The calorimeter was thermostatted to about  $\pm$  0.002 K as checked with a quartz thermometer (Hewlett-Packard, model 2801A). The maximum inaccuracy of the temperature readings is less than  $\pm$  0.005 K. Before being transferred to the separators, all liquids were degassed.  $H^E$  at any given composition was obtained as usual (16-18) from

$$H^{E} = (x_{1}V_{1}^{*} + x_{2}V_{2}^{*})V_{Z}IL/(\ell f).$$
(1)

Here  $x_1$  and  $x_2 = 1 - x_1$  designate the mole fractions of component 1 and 2, respectively,  $V_1^*$  and  $V_2^*$  are the molar volumes of the pure liquids,  $V_ZI$  is the electric power dissipated by the Zener diode during a separate electric calibration run (Joule effect),  $L/\ell$  is the ratio of the distance of the recorder trace from the base line (obtained at steady state mixing conditions) to the distance corresponding to the calibration experiment, and f is the total flow rate. For details we refer to our earlier articles. The performance of the calorimeter was routinely controlled by measuring  $H^E$  at 298.15 K of selected test mixtures, say (benzene + cyclohexane), over the entire composition range. Agreement with recommended literature data<sup>(19)</sup> was always satisfactory, that is to say within 1% over most of

the composition range. All excess molar enthalpies are based on the relative atomic mass table of IUPAC, 1986.<sup>(20)</sup>

# 3. RESULTS AND DISCUSSION

Experimental results for the excess molar enthalpies at 298.15 K are given in Table 1, while graphical representations are provided by Figs. 1 and 2. For each of the seven mixtures,  $H^E$  was fitted with a smoothing function of Redlich-Kister type, i.e.

$$H^{E}/J.mol^{-1} = x_{1}x_{2}\sum_{i=0}^{k}A_{i} (x_{1} - x_{2})^{i}.$$
 (2)



Fig.1. Excess molar enthalpies  $H^E$  at 298.15 K.Experimental results: O,  $\{x_1c-c_5H_9CH_3 + x_2c-c_5H_{10}\}; \bullet, \{x_1c-c_5H_9CH_3 + x_2c-c_6H_{11}CH_3\}; \bullet \$ , calculated from eqn.(2) with coefficients from Table 2.



Fig.2. Excess molar enthalpies  $H^E$  at 298.15 K. Experimental results: O,  ${x_1c-c_6H_{11}CH_3 + x_2n-c_7H_{16}}; \bullet, {x_1c-c_6H_{11}CH_3 + x_2n-c_{10}H_{22}}; \Box, {x_1c-c_6H_{11}CH_3 + x_2c-c_6H_{11}CH_3 + x_2c-c_6H_{$ 

The coefficients  $A_i$  and the corresponding standard deviations s are shown in Table 2. These coefficients were used to obtain the calculated curves in the figures.

Only for methylcyclohexane + n-heptane, (21-25) + cyclopentane, (26) + benzene (27,28) and + tetrachloromethane (29) could we find published results on H<sup>E</sup>. For {x<sub>1</sub>C<sub>6</sub>H<sub>11</sub>CH<sub>3</sub> + x<sub>2</sub>n-C<sub>7</sub>H<sub>16</sub>} agreement with Lundberg's results (24)

| Excess mo                                       | Jar enthalpies H <sup>E</sup>                                              | for (meth | ylcylopentane                       | + another li | quid) and (methy                    | lcyclohexane | + another liquid)                   |
|-------------------------------------------------|----------------------------------------------------------------------------|-----------|-------------------------------------|--------------|-------------------------------------|--------------|-------------------------------------|
| at 298.15                                       | K and atmospheric                                                          | pressure  |                                     |              |                                     |              |                                     |
| ۲×                                              | H <sup>E</sup> /J.mol <sup>-1</sup>                                        | ×1        | H <sup>E</sup> /J.mol <sup>-1</sup> | ×1           | H <sup>E</sup> /J.mol <sup>-1</sup> | ×1           | H <sup>E</sup> /J.mol <sup>-1</sup> |
| {x <sup>1</sup> c-c <sup>5</sup> H <sup>2</sup> | $_{1}^{0}$ + x <sub>2</sub> c-c <sub>5</sub> H <sub>10</sub>               |           |                                     |              |                                     |              |                                     |
| 0.0446                                          | - 1.47                                                                     | 0.3159    | -10.63                              | 0.5699       | -12.08                              | 0.9322       | -2.74                               |
| 0.2332                                          | - 8.62                                                                     | 0.4840    | -11.33                              | 0.8137       | -10.34                              |              |                                     |
| {x1c-C5H3                                       | $CH_3 + x_2 c - C_6 H_{11} CH_3$                                           | ÷         |                                     |              |                                     |              |                                     |
| 0.0595                                          | -10.03                                                                     | 0.3849    | -49.31                              | 0.6423       | -47.24                              | 0.9491       | -9.74                               |
| 0.2009                                          | -32.37                                                                     | 0.4746    | -52.04                              | 0.7264       | -40.51                              |              |                                     |
| 0.2918                                          | -42.66                                                                     | 0.5597    | -51.30                              | 0.8554       | -24.90                              |              |                                     |
| {x1c-c <sub>6</sub> H                           | ${}_{11}^{1}CH_3 + x_2^{1}n^{-}C_7^{-}H_{16}^{-}$                          |           |                                     |              |                                     |              |                                     |
| 0.0622                                          | 7.68                                                                       | 0.3575    | 31.14                               | 0.6133       | 35.98                               | 0.8550       | 21.41                               |
| 0.1689                                          | 17.65                                                                      | 0.4437    | 34.97                               | 0.6945       | 33.34                               | 0.9042       | 15.98                               |
| 0.2009                                          | 50.02                                                                      | C87C.U    | 30.43                               | 0.1802       | 64.07                               |              |                                     |
| {x <sup>1</sup> c-c <sup>6</sup> H <sup>1</sup> | $1^{1}$ CH <sub>3</sub> + x <sub>2</sub> n-C <sub>10</sub> H <sub>22</sub> |           |                                     |              |                                     |              |                                     |
| 0.0810                                          | 20.39                                                                      | 0.4250    | 75.16                               | 0.6782       | 76.14                               | 0.8867       | 40.59                               |
| 0.2126                                          | 47.30<br>64.58                                                             | 0.5144    | 80.18<br>80.33                      | 0.8250       | 56.09                               | 2026.0       | 00.42                               |
| 10,010<br>10,010<br>10                          |                                                                            |           |                                     |              |                                     |              |                                     |
| 1.10~~1~1                                       | 11~13 T 22 V5"10                                                           |           |                                     |              |                                     |              |                                     |
| 0.0395                                          | -12.8                                                                      | 0.2893    | -92.0                               | 0.5388       | -112.3                              | 0.9238       | -32.6                               |
| 0.1402                                          | -49.9                                                                      | 0.3702    | -104.6                              | 0.6333       | -105.9                              |              |                                     |
| 0.2114                                          | -71.6                                                                      | 0.4526    | -111.2                              | 0.7938       | -/b./                               |              |                                     |

TABLE 1

117

| TABLE 1 - continued                                                                                                                                               |                            |                                     |                            |                                     |                  |                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|----------------------------|-------------------------------------|------------------|-------------------------------------|
| x <sub>1</sub> H <sup>E</sup> /J.mol <sup>-1</sup>                                                                                                                | ×1                         | н <sup>E</sup> /J.mo] <sup>-1</sup> | ×1                         | H <sup>E</sup> /J.mol <sup>-1</sup> | ۲×               | H <sup>E</sup> /J.mol <sup>-1</sup> |
| {x <sub>1</sub> c-C <sub>6</sub> H <sub>11</sub> CH <sub>3</sub> + x <sub>2</sub> C <sub>6</sub> H <sub>6</sub> }<br>0.0782 270.5<br>0.1195 379.4<br>0.1841 535.0 | 0.2604<br>0.3354<br>0.4166 | 665.2<br>748.6<br>790.0             | 0.5009<br>0.5899<br>0.6940 | 788.9<br>735.4<br>618.8             | 0.7975<br>0.9234 | 433.8<br>150.6                      |
| {x <sub>1</sub> c-C <sub>6</sub> H <sub>11</sub> CH <sub>3</sub> + x <sub>2</sub> CC1 <sub>4</sub> }<br>0.0843 48.2<br>0.1285 73.9<br>0.1968 108.1                | 0.2766<br>0.3540<br>0.4368 | 134.2<br>151.5<br>159.7             | 0.5215<br>0.6097<br>0.7112 | 156.2<br>143.8<br>120.2             | 0.8105<br>0.9291 | 83.2<br>28.9                        |
| TABLE 2<br>Coefficients A <sub>i</sub> and stand                                                                                                                  | ard deviat                 | cions s for 1                       | east-squares r             | epresentation                       | by eqn.(2) of    | μ <sup>E</sup> at 298.15 K.         |
| Mixture                                                                                                                                                           |                            | A <sub>0</sub>                      | A1                         | A2                                  | A <sub>3</sub>   | s                                   |
| x <sub>1</sub> c-C <sub>5</sub> H <sub>9</sub> CH <sub>3</sub><br>+ x <sub>2</sub> c-C <sub>5</sub> H <sub>10</sub>                                               |                            | -49.86                              | -0.10                      | 8.16                                | 1                | 0.17                                |
| $+ x_2^{c-c_6H_1}^{cH_3}$                                                                                                                                         |                            | -208.74                             | 6.62                       | 20.49                               | -21.95           | 0.16                                |
| х <sub>1</sub> с-с <sub>6</sub> н <sub>11</sub> сн <sub>3</sub>                                                                                                   |                            |                                     |                            |                                     |                  |                                     |
| + x <sub>2</sub> n-C <sub>7</sub> H <sub>16</sub>                                                                                                                 |                            | 143.96                              | 32.21                      | 13.79                               | I                | 0.30                                |
| $+ x_{2}n - C_{1}nH_{22}$                                                                                                                                         |                            | 317.94                              | 69.27                      | 38.72                               | 31.43            | 0.48                                |
| + x <sub>2</sub> c-C <sub>6</sub> H <sub>10</sub>                                                                                                                 |                            | -453.9                              | -25.4                      | 28.6                                | I                | 1.4                                 |
| $+ x_2 C_6 H_6$                                                                                                                                                   |                            | 3169.8                              | -556.1                     | -237.1                              | -476.2           | 5.6                                 |
| $+ x_2 cc_1_4$                                                                                                                                                    |                            | 637.7                               | -107.9                     | -94.8                               | ı                | 2.0                                 |

$$H^{E}/J.mo1^{-1} = x_{1}x_{2}[136.3 + 27.7(x_{1} - x_{2})]$$
 (3)

is excellent, while those of Vesely et al.<sup>(22)</sup> are considerably lower and those of Alessi et al.<sup>(23)</sup> are much higher than our values. Holzhauer and Ziegler<sup>(21)</sup> report enthalpy data at one composition only, that is at  $x_1 = 0.5109$  and 298.15 K H<sup>E</sup> = 34.2 J.mol<sup>-1</sup>, in excellent accord with our results. Similarly, upon interpolation Brandt's excess enthalpies<sup>(25)</sup> are very close to those determined by us. For  $\{x_1C_6H_{11}CH_3 + x_2C-5H_{10}\}$  only H<sup>E</sup> at equimolar composition has been measured previously: de St.Romain et al.<sup>(26)</sup> found H<sup>E</sup>( $x_1$ =0.5) = - 112 J.mol<sup>-1</sup>, in excellent agreement with our -113.5 J.mol<sup>-1</sup>. Data on H<sup>E</sup> of  $\{x_1C_6H_{11}CH_3 + x_2C_6H_6\}$ , obtained with Van Ness type isothermal displacement calorimeters, have been reported by Nagata et al.<sup>(27)</sup> as well as by Tanaka et al.<sup>(28)</sup>. Both sets agree satisfactorily with our results. Finally, H<sup>E</sup> of  $\{x_1C_6H_{11}CH_3 + x_2Cc1_4\}$  has been measured with a flow calorimeter by Harsted and Thomsen.<sup>(29)</sup> Their values are very close to ours, i.e. at  $x_1 = 0.5$  they report 162.8 J.mol<sup>-1</sup> as compared to 159.4 J.mol<sup>-1</sup> from our experiments.

A detailed discussion of our results in terms of the KGB group contribution theory  $^{(30)}$  is in preparation.

#### ACKNOWLEDGMENTS

Financial support received within the frame of the Austrian-French program on scientific and technical cooperation is gratefully acknowledged by E.W. and J.-P.E.G.

#### REFERENCES

- A.Inglese, E.Wilhelm, J.-P.E.Grolier and H.V.Kehiaian, J.Chem. Thermodyn., 12 (1980) 217.
- A.Inglese, E.Wilhelm, J.-P.E.Grolier and H.V.Kehiaian, J.Chem. Thermodyn., 12 (1980) 1047.
- A.Inglese, E.Wilhelm, J.-P.E.Grolier and H.V.Kehiaian, J.Chem. Thermodyn., 13 (1981) 229.
- E.Wilhelm, A.Inglese, J.-P.E.Grolier and H.V.Kehiaian, J.Chem. Thermodyn., 14 (1982) 33.

119

- E.Wilhelm, A.Inglese, J.-P.E.Grolier and H.V.Kehiaian, J.Chem. Thermodyn., 14 (1982) 517.
- 6. J.-P.Grolier, A.Inglese and E.Wilhelm, J.Chem.Eng.Data, 27 (1982) 333.
- 7. A.Inglese, J.-P.E.Grolier and E.Wilhelm, J.Chem.Eng.Data, 28 (1983) 124.
- 8. J.-P.E.Grolier, A.Inglese and E.Wilhelm, J.Chem.Thermodyn., 16 (1984)67.
- 9. A.Inglese, J.-P.E.Grolier and E.Wilhelm, Fluid Phase Equil., 15 (1984) 287.
- 10. E.Wilhelm, A.Inglese and J.-P.E.Grolier, J.Chem.Eng.Data, 28 (1983) 202.
- A.Lainez, M.M.Rodrigo, E.Wilhelm and J.~P.E.Grolier, J.Chem.Eng.Data, 34 (1989) 332.
- M.A.Siddiqi, G.Götze and F.Kohler, Ber.Bunsenges.Phys.Chem., 84 (1980) 529.
- 13. M.A.Siddiqi and F.Kohler, Ber.Bunsenges.Phys.Chem., 85 (1981) 17.
- 14. M.A.Siddiqi, J.Chem.Thermodyn., 13 (1981) 1151.
- M.A.Siddiqi, P.Svejda and F.Kohler, Ber.Bunsenges.Phys.Chem., 87 (1983) 1176.
- 16. J.-P.E.Grolier, G.C.Benson and P.Picker, J.Chem.Thermodyn., 7 (1975) 89.
- 17. E.Wilhelm, Ber.Bunsenges.Phys.Chem., 81 (1977) 1150.
- E.Wilhelm, A.Inglese, A.H.Roux and J.-P.E.Grolier, Fluid Phase Equil., 34 (1987) 49.
- 19. R.H.Stokes, K.N.Marsh and R.P.Tomlins, J.Chem.Thermodyn., 1 (1969) 211.
- 20. IUPAC, Pure Appl.Chem., 58 (1986) 1677.
- 21. J.K.Holzhauer and W.T.Ziegler, J.Phys.Chem., 79 (1975) 590.
- F.Vesely, A.V.Mikulic, V.Svoboda and J.Pick, Collect.Chem.Commun., 40 (1975) 2551.
- P.Alessi, I.Kikic and V.Longo: see Handbook of Heats of Mixing, by J.J.Christensen, R.W.Hanks and R.M.Izatt, Wiley, New York, 1982, p.531.
- 24. S.W.Lundberg, J.Chem.Eng.Data, 9 (1964) 193. See also Int.DATA Ser., Sel.Data Mixtures, Ser.A, (1974) 219.
- 25. H.Brandt, Z.Phys.Chem. (Neue Folge), 2 (1954) 104.
- P.de St.Romain, H.T.Van and D.Patterson, J.Chem.Soc., Faraday Trans.1, 75 (1979) 1700.
- 27. I.Nagata, H.Asano and K.Fujiwara, Fluid Phase Equil., 1 (1978) 211.
- 28. K.Tamura, S.Murakami and R.Fujishiro, J.Chem.Thermodyn., 13 (1981) 47.
- 29. B.S.Harsted and E.S.Thomsen, J.Chem.Thermodyn., 7 (1975) 369.
- 30. H.V.Kehiaian, J.-P.E.Grolier and G.C.Benson, J.Chim.Phys., 75 (1978) 1031.