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ABSTRACT 

In this work the deviations of measured calorimetrical DSC- 
signals and transition temperatures from their true values are 
mathematically calculated by exact analytical and numerical 
methods. 

The obtained results can be used not only for a better un- 
derstanding of the procedure of measurement but also for 
minimizing deviations. 

Especially in the case of thermal deviations two procedures 
for obtaining the true transition temperatures are recommen- 
ded. 

l.INTRODUCTION 

In a previons work of the author a theory of heat transfer at 
DSC measurements was developed [l], but this theory was rela- 
ted only to specific heat. In this work the influence of heat 
transfer on the phase transitions and transition temperatures 
will be taken into account, too. 

') Institut fiir Pulvermetallurgie und Verbundwerkstoffe, 
8027 Dresden, Helmholtzstrafie 20 
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B.PHYSICAL MODEL 

2.1. Sample holder system 

In this work an usual disk-shaped arrangement of the sample 
and sample holder is used 121, which is shown schematically at 
figure 1. 

The pan and the sample are substituted by disks and the heat 
transfer coefficients have following meaning. 

%R = heat transfer coefficient between sample holder 
and pan 

&3R = heat transfer coefficient between pan and sample 

oc 2R = heat transfer coefficient between sample an the 
surroundings 

@IR anda3R are inversely proportional to contact resistan- 
ces, d 2R 1s proportional to heat dissipation to surroun- 
dings). 

Tu=TB+Kz t 

T=TA+KI t 

I I d2R 

SAMPLE 

PAN 

SAMPLE - 
HOU)ER 

Fig. 1 Calculation model for the influence of the heat-trans- 
fer coefficients 
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The sample holder is heated according to 

T = TA t Kit 

where 

TA = constant initial temperature of the sample holder 

f1 
= heating rate 
= time 

Thus heat flows from the sample holder through the pan and 
the sample to the surroundings with the temperature T,. 

This heat flux depends not only on the mentioned heat-transfer 
coefficients but also on heating rate, density, thickness, 
specific heat and heating conductivity of the pan and sample 
and on the specific transition heat if a phase transition is 
present. All these dependencies will be calculated in this 
work. 

In the case of heat-conducting DSC the temperature T, of 
surroundings is with K2 = KI (see fig. 1) 

TU 
= TB t KI . t 

and in the case of'power compensated DSC the temperature T, of 
the isoperibole surroundings is 

TU 
= TD = const, 

where in the case of the heat conducting DSC TD is the con- 
stant initial temperature of surroundings and in the case of 
power compensated DSC the permanent constant temperature of 
surroundings. 

This simplified one-dimensional arrangement is sufficient 
enough for a good thermophysical characterisation of the 
considered system. 

2.2. REFERENCE SYSTEN 

For increasing the sensitivity a reference system on the left 
side with the same capacity as the emty sample system on the 
right side is heated always in the same manner. 

The sample system on the right side has the index R and the 
reference system on the left side has the index L. Thus the 
difference of heating fluxes in the right und left system is 
measured in the both DSC-methods. 
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For reducing the calculation effort in this work the power 
compensated DSC will be considered only. 

2.3. ZERO SETTING PROCEDURE FOR DIFFERENTIAL SIGNAL OF HEAT 
FLUX 

For emty pans in the sample system and in the left system the 
differential heat flux AW, depends on the heat transfer 
coefficients Ocl,, Oc,,, OclR, 0c2R* OL3R in a complicated 
manner. 

For simplifying the problem the following procedure is used 
(see fig. 2). In a first step a measurement without the sample 
is accomplished. By using slope correction and zero setting 
the differential signal AW, s 0 is obtained. 

In a second step a sample is inserted into the right system 
and the measurement of the first step is repeated under the 
same conditions. Then the obtained signal L\ W = Wp is repre- 
sentative for the pure thermophysical properties of sample 
only, that means the very complicated dependence of the diffe- 
rential signal on the heat transfer coefficients 

OclR and 0C2R is compensated if the values of a 
are exactly the same as in the first step. For 

%L, ti 2L and Oc 
9 

there is no problem because it is not 
necessary to alter t e left and right system of empty pans 
before the second step. 

After the second step complications may arise not only from 
the heat-transfer coefficient 
deviation of the value of 

a,, but also from a possible 
MZR between the first and second 

step. 

is the heat transfer coefficient 
a 2R 

at the 
ist the heat transfer coefficient 
then a new effective heat transfer 

ficient can be defined as 

OC2e = (=2R)(2) - (d2R)(1) 

which has to be take into account after sloping correction and 
zero setting procedure in the first step. 



first Step : (1 1 
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lemtypon [emtypan] 
t t 
Y wR 

AM0 = WR- WL 

Au0 = Aw,l+~ J 9~ J ElR’ N~RI w3R 1 

slope- 
correction 

T 
zero setting 

-*i, a 
AM0 = 0 

T 

second step. (2) 

lemtypon (panirzg 

t t 

wL Wr, 

Ah = AW + Wp 
& 

= WR 

0 after first step 

Fig. 2 Zero setting procedure 

3. MATHEMATICAL SOLUTION 

3.1. SPECIFIC HEAT 

The parabolical initial-boundary condition problem of the 
third kind (see fig. 1) was solved by analytical and numerical 
methods. 

The solution W(T) is the heating flux for heating the sample 
system with the heating rate Kl from the constant initial 
temperature TA to the constant final temperature TE. W(TA) and 
W(TK) are the time independant heat fluxes for maintaining the 
constant temperatures TA and TK* 
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The deviations between analytical and numerial solutions are 
smaller than 10m4 X in temperature ranges where phase transiti- 
ons are absent. 

With the definitions 

D2 = 

h, = 

92 = 

c2 = 

and 

thickness of sample Dl q effective thickness of 

% 

pan 
heat conductivity of sample q heat conductivity of pan 

density'of sample fl = density of pan 

specific heat of sample c1 = specific heat of pan 

the abbreviations 

a1 
hl 

= 21/t J 1c1) 

=alR/21 

h13 =a3R'Bl 

a= 

b= 

'2h23D2 + h2 + 

I2 + h2h23D;/6 

1 t h2D2 

"2h23D2 + h2 t 

$2 t h2D;/6 

llh13Dl + hl + 

I1 + hlh13D;/6 

%2'al 

h23 

+ (h2 + h23) D;/2 

c= 

d= h23 

e= 

g= 

I‘= 

h13 

+ (hl + h13) D92 

s= 

A= 

E= 

z= 

z - a - h13h23c (1 + hlDl) 

(l/a21 [gb - hIah (1 + hlD1) el + 

(l/al [dr - h13h23 c @f/2 + h&6)1 
(T - TA)/K1 - E/A 

the solutions are 



A 
WA) = 

2 TA 

(l/h23) (1 + hl3/hl + Dlh13) + l/h2 + D2 

2 
W(TE) = 

2 TE 

(l/hz3) (1 + h13(hl + Dlh13) + l/h2 + D2 
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(1) 

(2) 

W(T) = - ( BlhlK1/A) [(h13 h23 c - hl3 a) s + 

(l/a2) (h13h23 (e + s c Dt/Z) - h13 b - 

s d (Dl + h13 $/2))1 - (l/Al) W(TA) (3) 

The expression W(T) is the equation of a straight line with 
the slope mD and with the ordinate section W,, therefore 

WD (T) = W, t mB T (4) 

W, and mB are functions of the thermophysical and geometrical 
parameters and of the heating rate and the heat-transfer 
coefficients according (3). 

For Dl = 0 andaIR ---> oy) the pure heat flux W into the 
sample without pan is obtained, which is nec%ssary for the 
application of the procedure of zero setting (see 2.3.). 

In the following this procedure will be used consequently. 

Figure 3 shows a typical calculated heat flux curve. 

For ideal heat 

our (Oc 

contacts ( OC 3D ---> 00) and adiabatic behavi- 
0) no temperature dependence is visible and the 

signal EZ: ideal value (Fig. 3 (i)) 

W = w, = D292 ~2 KI 

An example of ideal phase transition with the transition 
temperature T, is shown, too. 

For real heat contacts ( a < 0) and heat dissipation to the 
isoperibole surroundings ( 22e > 0) the quasistationary heat 
flux W(T) is temperature dependant (see Fig. 3 (ii)) and the 
signal bW = W, is smaller than the ideal signal W,. 

The isothermal heat fluxes W(TA) and W(TE) do not disappear 
under real conditions, where 
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Aw 

t 

AW 

t 

W( 

ideal : 

a2e - 

a3.R - 

0 
co 

(iI 
real : 

MO 

1) 

I 
’ T 

I I I t I 

A Ts Ton TE -T 

(ii) 

Fig. 3 Graphical representation of mathematical solution 

The deviation of the real signal W* 
is defined as 

from the ideal signal Ws 

F= 
I W* - wsl 

Ws 

and the difference between W(TA) and W(TE) related to Ws is 
defined as isothermal distance 
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v= 
WE) - W(Q) 

Ws 

In figure 4 the deviation F is shown as a function of isother 
ma1 distance V at different values of Ooze and ~6,. 
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Fig. 4 Deviation F between true and real calorimetrical signal 
as a function of isothermal distance 

It is seen that the deviation F can be hold small (for example 
F 5 0,2 X) for two conditions: 

1. strong dissipation of heat (curve 3) with very good heat 
contacts (curve 6) 
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2. small dissipation of heat (curve 1) with any heat contact 
(for example curve 4 which represents very poor 
heat contact) 

On the other side the deviation F can be very great if there 
are very poor heat contacts (curve 4) and great heat dissipa- 
tion (curve 3), therefore F = 17 X for the crossing point of 
the curves 3 and 4 will be reached. It can be also seen that 
only the maximal values 
stances (OC3K = 4 . 10' "53,m- ZY 

x(VJ _caused by maximal heat resi- 
K ) have a unambigous relation 

to the isothermal distance V(here represented by curve 4). For 
smaller heat resistances there is no such unambigous relation 
between F and V. 

An influence of the heat conductivity and of the heating rate 
on the value of F was not found. 

3.2. TRANSITION HEATS AND TRANSITION TEMPERATURES 

The true value of specific transition energy is generally not 
influenced by the thermophysical and geometrical properties 
of sample neither by the heating rate and the heat-transfer 
coefficients. Only the shape of the DSC-signal is modified. 
Figure 3 (ii) shows schematically and figure 5 precisely the 
deformation of the originally very sharp transition mainly 
caused by small values ofOC 

9 
K. Under the supposition of using 

the zero setting procedure see 2.3.) the slope at the point 
of inflexion of the ascending parts of the transition curves 
is in every case equal to 0C3, independently from heat capa- 
city, specific transition energy, heat conductivity and hea- 
ting rate (see fig. 5) for small heat capacities especially. 

The tangent at the point of inflexion cuts the zero line 
exactly in the true transition temperature T,, which is here 
505Oc. 

It is remarkable that for smaller values of heat conductivity 
the slope decreases more or less near the maximum of the d W- 
signal (see curves 2, 4, 7, 8 and especially curve 5). 
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Fig. 5 Numerically calculated transition shapes under diffe- 
rent conditions 
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In figure 6 the relations between the true transition tempe- 
rature T,, the extrapolated onset temperatures T and diffe- 
rent values of spezific heat, density, heating ra e and heat- Oe 
transfer coefficients are presented, because the height of 
every baseline A, B, or C is proportional to spezific heat, 
density, heating rate and the heat-transfer CoefficienttiS,. 

The higher the baseline the greater the difference between T, 
and Ton. 

The smaller the value of a36 the smaller the slope and there- 
fore the greater the shifting of T to higher temperatures. 
(See the slopes labelled by I and'?I). 

i 
Aid 

I 

, 

0 

Fig. 6 Relations between true transition temperature, onset 
temperatures, thermophysical properties, heating rates 
and heat-transfer coefficients (schematically) 
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3.3. TEEOEETICAL DETEEEINATION OF TEE TRUE TRANSITION 
TEMPERATURE T, 

3.3.1. ZERO-CUT-METHOD 

The equation for the tangent at the point of inflexion has in 
every case the form (see fig. 3) 

WFL(T) = 

For WFL(T) s 0 follows 

3R (T - Ts) (5) 

T = T, 

Thus the crossing point of (5) with the axis W s 0 represents 
the true transition temperatur T, for all cases. 

3.3.2. CROSSING-POINT-METEOD 

The crossing point of the baseline (4) with the tangent (5) at 
the inflexion point is the onset temperatur Ton. 

From (4) and (5) follows 

T = 
mFL ’ T&3 + w. 

on Or (6) 

mFL - mB 

T 
T, = On 

(mFL - "B) - Wo 
(7) _ 

mFL 

Every DSC-measurement with a phase transition produces Ton, 
Thus it is possible to determinate T, also in 

4. CONCLUSION 

As shown in this work, the DSC-measurement produces neither 
true calorimetrical signals for determination of specific heat 
nor the true transition temperatures. 

Whereas it is impossible to reconstruct the true calorimetri- 
cal signal from the measured signal, the determination of the 
true transition temperatur from the measured values can be 
accomplished at the same measurement independently from mass, 
heat capacity, heating rate and heat-transfer coefficients. 
This has the consequence of a remarkable simplification of the 
determination of transition temperatures and of a essential 
improvement of precision at the same time. Up to now it has 
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been usual to measure the onset temperature at very many 
masses and heating rates for determination the true transition 
temperature by extrapo.lating the mass and the heating rate 
towards zero. 

With the theoretically derived methods of the zero-cut-method 
and the crossing-point-method it is easy to develop a suita- 
ble software for precise und quick calculation of the true 
transition temperatures instead of using the time consuming 
onset methods. 
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