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Abstract 

Heat conduction in DSC and sample as well as heat transfers cause a falsification 

(smearing) of the measured heat flux in DSC measuremts. Therefore transition 

phenomenons (peaks and steps) in DSC-curves are measured broader and shifted 

along the temperature scale. A method is shown which allows a correction of the 

“smeared” DSC-curves on the base of linear response in the case of badly heat 

conducting samples. The necessary Green’s function can be received from the 

smeared curve without additional measurement. 

1. INTRODUCTION 

In analyzing DSC measurements beside transition temperatures often the exact 

shape of peaks or cp step changes (glass transition) are of interest [1,2]. From the 

DSC-curves it isn’t possible to get these informations directly. Therefore various 

algorithms have been developed which allow e.g. the corrections of temperature of 

transition peaks [3,4]. These methods can be used successfully in measuring small 

samples with good heat conductivity. Because in scanning operation there is no 

significant temperature gradient inside the sample. In the case of substances with low 

heat conductivity a temperature gradient inside the sample cannot be neglected. In 

measuring polymers with heating rates of 10 K/min there appear temperature 

gradients of up to 2 K inside the sample [5]. In DSC-curves of this substances the 

peak and step transitions are measured to broad and transitions temperatures are 

shifted to higher values. Temperatures and transitions shapes depend on the 
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geometry of the sample. 

Such systematic errors cannot be avoided by variation of experimental conditions. 

For the analysis od DSC-curves it is necessary to use algorithms in which the 

“smearing” of the curves by heat conductivity of the sample as well as influences of 

the measuring device are taken into consideration. 

With aid of methods of the theory of linear response the smearing effect can be 

described with a Green’s function. The problem is to develop an algorithm for 

estimation of this function, where sample and measuring device are considered as one 

system. In order to investigate the cause of smearing the following cases are 

distinguished: 

(i) real measuring device and ideal sample 

(ii) ideal measuring device and real sample with heat transfer between device and 

sample 

(iii) real system of sample and measuring device. 

In each of this cases it is assumed that the interactions between the measuring 

system and surroundings do not change during the measurement. These assumption 

is fulfilled in the case of a sufficient small temperature range. 

2. DESCRIPTION OF TRANSFER BEHAVIOR OF SAMPLE AND MEASURING 

DEVICE 

The DSC measures the heat flux which is necessary to change the temperature of 

a sample at a constant scanning rate. In the idealized case the course temperature of 

the sample is always equal to the program temperature. Assuming that the energy 

produced by the heater is transferred into the sample without any losses and 

relaxation and that there is no temperature gradient inside the sample, the registered 

heating power is equal to the heat flux calculated from the equation: 

with m, being the mass of the sample, cp the spezifical heat capacity, p the 

temperature scanning rate, and q, the energy of transition (in the case of a first order 

phase transition). The measured heat flux @(t) is caused by the temperature gradient 

between heater and sample. 
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In real measurements the measured signal is considerably different from the 

expected one from equation 1, a smearing of the heat flux is produced by the heat 

conducting system DSC - sample. 

if-put function Green ‘s function 

t 

output functm 

Figure 1. Connection of input function and output function in a DSC in the case of a 
first order phase transition 

In figure 1 the connection is shown schematically. The input function @i,(t) is 

calculated according to equ. 1. The DSC-curve is the output function belonging to it. 

Reasons for the difference between input and output function arises from the heat 

transfer paths between heater and sample, and inside the sample as well, and from 

the electronics. 

Considering the temperature range small enough the DSC can be described as a 

linear system. The transfer behavior of the measuring device is then described by the 

Green’s function A(t). 
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The connection between input function 4+,(t) and output function aout(t) is given by 

the convolution integral: 

4,P) = A(0 * 4#) Pa) 

that is: 

Thus, if the Green’s function is known the input function can be calculated from ip,,! 

A(t) is the answer of the device on a Dirac impulse input function. 

In this paper an algorithm for determination of this specific Green’s function is 

presented for the case of badly head conducting samples, under the assumption of 

only small changes of such the properties as heat conductivity h, heat capacity c,, and 

density p for the transitions in question. 

This assumption is usually fulfilled in case of transitions without enthalpy step 

changes (e.g. glass transition, and second order transition). 

3. THE INFLUENCE OF THE MEASURING DEVICE AND THE SAMPLE ON THE 

SMEARING 

To simplify the investigations we consider only the half of the twin calorimeter, 

which contains the sample. The influence of the reference side is neglected [6] 

3.1. Smearing in the case of ideal sample 

TO begin with, for easier description of smearing problems the contribution of the 

sample shall be abstracted from. A model that corresponds to these conditions is a 

DSC with a infinite thin sample in it. 

A heat resistance between DSC and sample is neglected. Then the falsification of 

the measured curve is caused through the heat transport inside the DSC and the 

following electronics. 

In the literature there have been described different procedures for estimation of the 
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Green’s function A(t) [3]. 

Always the Green’s function must be estimated in a separate experiment. These 

methods are useful to desmear measured curves of samples, which are close to the 

considered model, e.g. melting curves of thin indium samples. 

If the heat conduction of the sample and heat transfer between DSC and sample 

cannot be neglected, these procedures fail, because the sample specific transfer 

properties are not referred to. Hence it is necessary to estimate the Green’s function 

for each sample separate. 

3.2. Smearing in the case of a real sample in an ideal calorimeter 

Only the sample is the cause of smearing in this case. In the considered model the 

sample has a low heat conductivity. The calorimeter is assumed to be ideal, that is 

there is no smearing of the signals through the measuring device. 

l-1 - 
Temperature 

‘“1 Sample 

t2 

t1 

Figure 2. Scheme of the temperature profile and a “walking” layer of temperature T, 
inside the sample at two times (f2>t,) 
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Only the heat transfer between DSC and sample and within the sample are taken 

into account. 

In samples with bad heat conductivity at a temperature scan with constant rate a 

temperature gradient is build up within the sample which, after reaching of stationary 

conditions, doesn’t change anymore [7J. When a transition takes place thus the whole 

volume will not carry out this transition at the same time. According to the temperature 

profile there are regions which start earlier and other which start later with the 

transition. For illustration this circumstances shall be described by a discrete model of 

a “walking” layer. The transition in question takes place in one layer. In this model a 

layer is the region of the sample which correspond to the same thermodynamical 

state.ln figure 2 the model is shown schematically. 

In figure 3 the smearing effect of 

[Kl 

temperature gradient is built up 

due to the longer path of heat flow 

which leads to an increase of the 

measured glass temperature and 

Figure 3. Glass transition of PVC foils of 
different thickness 
(cooling rate: -20 Wmin, 
m,: 1...2.396 mg; 2...49.948 mg) 

to a broader measured glass 

transition range. 

At first the smearing of the 

measured heat flux of one layer 

shall be described. When a 

transformation takes place in this layer the enthalpy changes and induces a heat flux 

01”. This heat flux follows from equ. 1 when m, is replaced by the mass of the layer 

m’. The heat flux of a sample without temperature gradient (this is a infinite thin 

sample) may be calculated from the heat flux of the layer with the highest temperature 

by 

Q:.(t) is a not smeared heat flux. This heat flux corresponds to the input function 
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due to the theory of linear response. 

Because of the heat flow paths in the sample and the heat transfer between DSC 

and sample the heat flux @in will be smeared. 

The output function @k(t) is therefore the convolution integral of O:,(t) with the 

Green’s function of the sample for this layer 4(t) 

In this model @Jt) of the sample is identical with the input function of the 

calorimeter. 

Because of the different long heat flow paths inside the sample a different Green’s 

function g(t) must be attached to each layer. 

In a sample however several layers contribute to the measured signal 

simultaneously. During a transition in a sample layers produce in different distances 

from the DSC at different times a signal Q$(t). The path of heat flow to each layer is 

different as well. That’s why there is a specific Green’s function AA,i(t) for each layer. 

Since the signal transfer is carried out with the help of heat conduction, the signals 

of the single layers and the specific Green’s functions are linear superpositionable [8]. 

We get for all i layers of the sample (i=l,2,3,...): 

Gut(t) = CA:,(t) * 4i7,,(0. i (5) 

Generally a three dimensional temperature profile is built up in the sample. 

Therefore the masses of the layers and by that the magnitude of the corresponding 

heat fluxes will be different. 

If the input function of the layers is normalized do to the layer mass in question than 

they distinguish only in a temporal shift: Ati=ti-b. This time difference corresponds to 

the time which is necessary until the layers have the same temperature as the bottom 

layer of the sample had at the time t,. Thus the specificated Green’s function of one 

layer is given by 

(‘3 
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ai, is identical for all layers and corresponds to the heat flux into an ideal sample 

without temperature profile. 

Then eq. 4 can be written in the following form: 

(A:,(t) * W-A4)). 

Where neither the mass of a single layers ml nor the time difference Ati can be 

received from the experiment. 

The Green’s function of the whole sample is then: 

A#) = T $ (A;,(f) * b(t-At;)). 
s 

(8) 

3.3. The smearing of measuring curves in a real system 

In a real measuring system a smearing of the input function by the calorimeter and 

by the sample as well is found. In figure 4 this case is shown graphicly. 

The input function is first smeared by the sample with the Green’s function A,(t). 

The output function of this is simultaneously the input function of the calorimeter. After 

a smearing with the Green’s function A,,(t) the DSC-curve as the resulting output 

function of the total measuring system is received. The output function is then: 

h,,#) = b,sc(~) * (A,(t) * 4#)). (9) 

Due to the commutativity and associativity of the convolution operation the total 

Green’s function is the convolution of the Green’s function of the measuring device 

with the Green’s function of the sample: 

40 = Am&t) * A,(t) (10) 

It can be seen that due to the influence of the sample on the smearing the Green’s 

function must be determined for each sample separately. 



.___,.-__.I--...--- heater \\, @in * As 

.__ .__._. _ ..--...--. electronic ,“’ 

I ain* As* ADSC 

---.---_..---...---.--_~. thermogram ___ ____ ____ 

-- &t(t) 

Figure 4. Origin of a Signal in a real calorimeter - sample - arrangement in the case 
of a single layer transition 

4. ESTIMATION OF THE GREEN’S FUNCTION 

The basically necessary problem in the desmearing consists in the determination Of 

the Green’s function. From eq. 2 follows, that it is possible to receive A(t) by solving 

the convolution integral if the input and output functions are known. The input function 

must be an as exact as possible defined signal of a single layer of the sample. 

To determine A(t) such conditions have to be fulfilled, that “walking” layers can arise 

in the sample, which behave similar to those of the transition to be measured. 

To simulate this condition often sharp heat pulses are used. The measured heat 

flux then corresponds to the Green’s function. 
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One possibility is the thermal stimulation of the sample with a light flash [9]. The 

determination of A(t) is never the less connected to a rather large expenditure of 

devices. Furthermore the thermal conditions (and therefore the temperature profile) 

in the sample are incompatible to those of the scanning run of the DSC. In scanning 

mode the heat flow to the sample doesn’t come from one side only. If the heat 

conductivity of aluminum of the sample pan is larger than that of the sample then heat 

flux into the sample will take place along the whole surface of the sample. 

A better possibility to produce a definite input function can be derived from eq. 1. 

If the sample temperature is sufficiently far away from the transition temperature eq. 

1 can be simplified to 

It can be realized that a step like change of the temperature scanning rate p 

produces a definite input function ai,( 

A requirement is the Constance of c, or possibility to extrapolate c,,(T) from the 

measured curve. One way for producing a nearly step like change of p is the change 

from isothermal operation to scanning mode, as is the case at the beginning and at 

the end of each measurement. 

In following the behavior of the 

system DSC - sample arrangement 

at the switch on of the heating scan 

is investigated more exactly. The 

results can be used without 

restriction for all switch processes 

of the scanning rate fi. 

At the change from isothermal 

t0 Time 

mode to a temperature scan of the 

calorimeter a faded bend in the 

curve is registered (s. figure 3). 

Figure 5. Temperature slop in the range of 
starting time of temperature scan t,; l- 
program temperature, 2- measuring 
temperature, 3- temperature slope in 
steady state 

At switching on, a temperature 

profile inside the sample is built up, 

which change the temperature in 

time retaining it’s form and shape 

rather constant [7]. Thus “walking” 
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layers inside the sample are formed. 

The temperature gradient is driving force for the heat flux from the heater. The input 

function is given by eq. 11. 

The smearing of the input function at scan rate change can be seen in the actual 

heating rate of the sample which, after switching on the temperature scan until steady 

state, is lower than the program heating rate (s. figure 5). The Green’s function 

belonging to it is h,(t). Thereby a difference between sample and program 

temperature arises. 

Now the case is considered, that the temperature profile doesn’t change during a 

transition. Then A,,(t) is equal to A(t). 

This assumption is valid for such transitions where heat capacity, density, and heat 

conductivity changes rather small and no transition enthalpies appear, as for instance 

at the glass transition and second order phase transition. 

From the switch-on signal of the temperature scan the Green’s function of the DSC 

with sample can be received by solving the convolution integral 

b,(t) = jS(t-r) A(r) dr . 
0 

(12) 

S(t) is the input function due to the switching of the scan rate. For a DSC with a ideal 

step function in the scan rate S(t) reads: 

S(t) = 0(&b) - c&T). pm- m,. (13) 

f3(t-tJ is the step function, ppro the program heating rate , and t, the time of switching 

on the scan mode. 

If the step like change of program scanning rate cannot be realized in a calorimeter 

the real change of actual program temperature voltage must be used for S(t). 

If the transfer function is estimated from the switch off behavior, the temperature 

dependent change of c,, can be neglected. In that case also the heat transfer between 

heater and sample are in better agreement with the reality of transitions. 

In this case for S(t) the normalized program voltage scan after switching off the 

dynamic operation is used. 



346 

With the Green’s function obtained the convolution integral 

(14) 

can be solved for 4,(t). @dt) is the heat flux into the ideal sample without temperature 

gradient. 

The Green’s function depends indeed on temperature as well and should be 

determined near the transition temperature. It may be necessary for that reason to do 

this in a second run. 

5. EXPERIMENTAL RESULTS 

PVC samples with a mass of 2.396 mg and 49.948 mg have been 

temperature range from 450 K to 320 K with a cooling rate of 

measurements were carried out with a Perkin Elmer DSC-2. The 

shown in fig. 6. 

measured in the 

-20 Wmin. The 

DSC-curves are 

I 1 

1.6 3.2 4.8 6.4 
t [ mlnl 

Figure 6. DSC-curves of PVC (cooling 
rate: -20 Klmin; 
1: m,=2.396 mg; 2: m,=49.948 mg) 

lb 214 
I 

3.2 
t [min] 

Figure 7. DSC-curve at step in switching 
on the temperature scan: 1; 
step function S(t) at eq. 13: 2; 
m,=49,948 mg 

In the c,(T)-curves belonging to them (cf. fig.3) the glass transition is recognizable. 

Glass transition temperature and width of the glass transition AT=T,-T, depend on the 

mass of the sample (compare Table 1). T, and T, are that temperatures at which 16% 
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or 84% of the step high AC,, are reachedDifferences between the step heights are 

caused by the larger measuring uncertainty (noise) in the case of the smaller sample. 

For determination of the Green’s function the step of switching on the cooling scan 

has been used. For estimation of the function S(t) due to equ. 13 a linear extrapolation 

from the steady state to t, was carried out (s. fig. 7). In the considered temperature 

range (40 K) the temperature dependence of cP can be assumed to be linear. 

The calculation of the Green’s function from the measured curve and the step 

fun~~on ac~rd~ng to equ. 12 was pe~o~ed by solving the integral equation in the 

given time range after discretisation and following regularization according to Tikhonov 

[lO,ll]. The numeric algorithm is described elsewhere [12]. 

0 0.5 
t [mi 

Figure 8. Green’s function; 
i : m,=49.948 mg; 2: m,=2.396 mg 

1 

nl 

In figure 8 the calculated Green’s 

functions are shown. It is 

recognizable that these function 

disappear more quickly in the case 

of smaller samples. The smearing of 

DSCcurve is less because of the 

lower influence of the heat 

conductivity of the sample. (The 

Green’s function of a non-smeared 

curve is the Dirac fun~ion.) 

The desmearing of the DSC- 

curve was carried out according to 

equ. 14 with the help of the named 

numeric algorithm. 

For determination of the c,(T) 

curve a base line correction with a 

similar desmeared base line was 

used. The glass transition region of the desmeared curve is presented in figure 9. The 

appropriate values are listed in table 1. 

The glass transition temperatures of both desmeared curves are recognizable to be 

in good agreement. Differences in the width of the glass transitions may point to a 

nover~m~nsation~ in the desmearing of the heavy sample leading to a more narrow 

glass transition region. The reason of the overcompensation may lie in the large 

asymmetry between sample and reference during this measurement [S]. 
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I I , I 

370 360 350 340 

T [ Kl 

Figure 9. Measured (1,2) and desmeared (3,4) curves of the glass transition of PVC 
sample with different mass (1,3: m,=49.948 mg and 2,4: m,=2.398 mg); the curves 2 
and 4 are shifted down by 0.45 J/gK 

Table 1 
Characteristic dates for the glass transition of the measured and desmeared DSC- 
curves of fiaure 9 

measured desmeared 

n-6 bwl 2.396 49.948 

T, WI 354.9 352.0 

T, [Kl 350.9 346.9 

T, [Kl 345.4 340.4 

AT [Kl 9.5 11.6 

Acp [JWI 0.364 0.381 

2.396 49.948 

356.8 356.2 

352.8 352.7 

347.8 348.1 

9.0 8.1 

0.362 0.384 
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Summarizing it can be noticed, that with help of the represented method falsification 

(smearing) of the measured curve by reasons of heat conducton in sample and DSC 

can be corrected. The differences between the curves of a very light and very heavy 

sample are much less after the desmearing than they were in the measured curve. 

Cause of the remainding differences after desmearing is the simple calorimeter model 

used, in which the influence of the reference sample on the measured signal is 

neglected. 
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