DSC studies on the kinetics of decomposition of some Mg-containing borates under high pressures

Yuan Ximing, Sun Zuowei and Tang Yuanjun

Department of Applied Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (People's Republic of China)

(Received 4 February 1991)

Abstract

The dehydration enthalpy ΔH and the activation energy E_a of some Mg-containing borates, viz. macallisterite (MgO·3B₂O₃·7.5H₂O), inderite (2MgO·3B₂O₃·15H₂O) and kurnakovite (2MgO·3B₂O₃·15H₂O) under high pressures (1, 2 and 4 MPa) have been determined by using a DuPont DSC 9900 thermal analyzer. Kinetic parameters for these reactions are discussed and calculated using the Kissinger and simple Ozawa methods.

INTRODUCTION

The Mg-containing borates $(xMgO \cdot yB_2O_3 \cdot zH_2O)$ are important substances. The thermo-kinetic feature of some Mg-containing borates under normal pressure were determined in our earlier work. It is necessary to determine their thermal character under high pressure by the DSC method in order to predict their stability and transformation.

SAMPLE PREPARATION

Macallisterite, inderite and kurnakovite were synthesized in our laboratory.

EXPERIMENTAL

A Du Pont differential scanning calorimeter (DSC V2.2A Du Pont 9900) was used for the present kinetic study. The temperature and sensitivity were carefully calibrated under high pressure before the experiments. Heating rates were 5°, 10°, 15° and 20°C min⁻¹. In each run, a sample was placed in an aluminium pan over which a constant current of pure nitrogen gas (50 ml min⁻¹) was passed to remove gas evolved in the decomposition of the sample. The instrument's computer was used on line to collect and store the experimental data.

DATA PROCESSING AND RESULTS

First, the heat flow-temperature curves were obtained after baseline correction (see Figs. 1, 2 and 3).

Fig. 1. Heat flow-T curve of macallisterite.

Fig. 2. Heat flow-T curve of inderite.

Fig. 3. Heat flow-T curve of kurnakovite.

The dehydration enthalpies, ΔH , of the samples under high pressure were estimated (see Table 1).

Then, the heat flow-temperature curves of the samples under different heating rates $(5^{\circ}, 10^{\circ}, 15^{\circ} \text{ and } 20^{\circ} \text{C min}^{-1})$ were recorded (see Figs. 4 and

Fig. 4. DSC curves of macallisterite under different heating rates.

	pressures
	different
	under
	ΔH
L	ſo
TABLE	Results

Mac	allisterite						Inde	rite						Kum
, No	P	Weight	Heating	ΔH	$\overline{\Delta H}$	ΔH	° Z	d	Weight	Heating	ΔH	ΔH	ΔH	°. Z
	(MPa)	(mg)	rate	(J g ⁻¹)	(Jg ⁻¹)	E		(MPa)	(mg)	rate	(J g ⁻¹)	$(J g^{-1})$	(FI	
			ວູ			mol ⁻¹)				ູດ			mol^{-1})	
			1 - nim							min - 1)				

lac	allisterite	83					Inde	rite						Kur	akovite					
ġ	P (MPa)	Weight (mg)	Heating rate (°C	Δ <i>H</i> (J g ⁻¹)	<u>∆H</u> (J g ⁻¹)	<u>∆H</u> (kJ mol ⁻¹)	°Z.	P (MPa)	Weight (mg)	Hcating rate (°C	Δ <i>H</i> (J g ⁻¹)	$\frac{\overline{\Delta H}}{(\mathbf{J}\mathbf{g}^{-1})}$	<u>∆H</u> (kJ mol ⁻¹)	No.	P (MPa)	Weight (mg)	Heating rate (°C	Δ <i>H</i> (J g ⁻¹)	<u>AH</u> (J g ⁻¹)	<u>∆H</u> (LJ mol ⁻¹)
			min ⁻¹)							min ⁻¹)			,				(¹ - uim			
	1	9.70	5	839.9 \			13	1	9.60	5	1158.0	-		25	1	10.00	ŝ	1120.0 \	-	
	1	9:90	10	834.3	1 7 700	3 1.00	14	1	9.60	10	1152.0	0 1 1 1 1	0 767	26	1	9.80	10	0.6111		0.00
	1	9.80	15	836.1 /	1.000	C.12C	15	1	9.90	15	1124.0	9./CII /	0.000	27	1	9.90	15	1105.0 /	/ 	97179
	1	9.80	20	836.4/	-		16	1	9.90	20	1117.0/	-		28	1	9.80	20	1100.0/		
	ы	9.90	ŝ	774.3	-		17	7	10.00	s	948.2	~		29	2	10.00	ŝ	905.9	~~~	
	7	10.00	10	725.9	1 000	r var	18	7	10.00	10	946.0	0000	0 103	8	7	10.10	10	901.1	0,00	0.002
_	7	10.00	15	687.0 /	1.621	7.002	19	7	9.90	15	915.9	(0.120	31	7	10.00	15	892.9 /	2.040	0.200
	7	10.10	20	752.2)			20	2	10.00	20	913.4 /			32	7	10.10	20	890.4 /	-	
	4	10.00	s	730.1	~		21	4	10.00	ŝ	794.0	~		33	4	10.10	ŝ	830.1 \		
0	4	10.00	10	667.4	0000	6 6 6 C	ដ	4	10.00	10	792.9	0 102		8	4	10.00	10	818.2		0.031
Ξ	4	10.00	15	625.7	0.700		23	4	10.10	15	7.067	0.16	7.044	35	4	10.10	15	814.0	1.010	7.904
<u>e</u>	4	10.10	20	624.9/	-		5	4	10.20	20	789.7	-		36	4	10.10	20	812.3 /	-	

Fig. 5. DSC curves of kurnakovite under different heating rates.

Fig. 6. $\Delta H - P$ curves.

,
¢

rates
heating
ferent
e dif
at th
Data

	ф 80	0669.	0000.	.1761	.3010	0669	0000.	.1761	.3010	0669	0000.	.1761	3010
		3220 0.	6421 1.	2373 1.	9662 1.	3048 0.	5183 1.	2315 1.	9479 1.	2926 0.	5108 1.	2250 1.	9468 1.
	H H H H H H	- 10.	- 9.0	- 6	- 8.	- 10.	- 9.0	- 9.	- 8.	- 10.	- 9.0		1
	$\frac{1/T_{\rm m}}{\times 1000}$	2.5652	2.5483	2.5474	2.5263	2.5874	2.5787	2.5548	2.5497	2.6031	2.5885	2.5632	2.5510
	T _n (°C)	116.68	119.27	119.41	122.68	113.34	114.64	118.27	119.06	111.00	113.18	116.99	118.86
e	Heating) rate (°C min ⁻¹)	5	10	15	20	5	10	15	20	5	10	15	20
akovit	P (MPa)	-	1	1	1	7	7	7	7	4	4	4	4
Kur	No	5	62	63	2	65	99	67	89	69	70	11	72
	log φ	0.6990	1.0000	1.1761	1.3010	0.6990	1.0000	1.1761	1.3010	0.6990	1.0000	1.1761	1.3010
	$\ln\!\left(rac{\phi}{T_{\rm m}^2} ight)$	-10.4188	-9.7132	- 9.2980	- 9.0056	-10.3630	-9.6730	- 9.2770	- 8.9980	-10.3374	9.6585	-9.2637	- 8.9794
	$\frac{1/T_{\rm m}}{\times 1000}$	2.4440	2.4593	2.4713	2.4771	2.5131	2.5092	2.4973	2.4865	2.5455	2.5275	2.5140	2.5098
	Tn (°C)	136.02	133.47	131.50	130.54	124.76	125.38	127.28	129.02	119.70	122.50	124.63	125.29
	Heating rate (°C min ⁻¹)	\$	10	15	20	s	10	15	50	S	10	15	20
rite	P (MPa)	 	1	1	1	7	7	7	2	4	4	4	4
Inde	No.	64	ŝ	51	52	53	\$	55	56	57	58	59	60
	log ¢	0.6990	1.0000	1.1761	1.3010	0.6990	1.0000	1.1761	1.3010	0.6990	1.0000	1.1761	1.3010
	$\ln\!\left(rac{\phi}{T_m^2} ight)$	-10.6515	-9.9825	9.5899	-9.3173	- 10.6477	- 9.9787	9.5886	-9.3189	- 10.6443	- 9.9791	- 9.5932	- 9.3129
	1/T _m ×1000	2.1755	2.1494	2.1357	2.1196	2.1796	2.1535	2.1371	2.1179	2.1834	2.1531	2.1322	2.1243
	T _n (°C)	186.51	192.10	195.09	198.63	185.64	191.21	194.78	199.02	184.86	191.30	195.85	197.59
rite	Heating 1) rate (°C min ⁻¹)	5	10	15	20	ŝ	10	15	20	s	10	15	20
allister	P (MPa	1	1	1	I	7	7	7	7	4	4	4	4
Mac	° Z	37	38	39	4	41	4	43	4	5	8	47	48

	Macallisterit	e						
	Kissinger me	ethod		Simple Oza	wa method			
P (MPa)	1	2	4	1	2	4		
E_a (kJ mol ⁻¹)	202.6	181.84	181.27	199.9	180.2	179.6		
r	0.9962	0.9920	0.9970	0.9965	0.9926	0.9972		
a	- 24.37	-21.87	-21.80	- 10.99	- 9.903	- 9.872		
b	42.39	37.08	37.00	24.62	22.31	22.25		
	Inderite							
	Kissinger me	thod		Simple Oza	wa method			
P (MPa)	1	2	4	1	2	4		
$E_{\rm a}$ (kJ mol ⁻¹)	347.2	376.9	302.6	324.9	364.6	293.8		
r	0.9982	0.9241	0.9954	0.9985	0.9264	0.9956		
a	41.76	-45.34	- 36.40	17.86	-20.04	- 16.15		
b	-112.5 103.8 82.31 -42.94 51.17 41.81							
	Kurnakovite	:						
	Kissinger me	ethod		Simple Ozawa method				
P (MPa)	1	2	4	1	2	4		
$E_{\rm o}$ (kJ mol ⁻¹)	285.5	254.0	198.8	277.6	247.5	195.1		
r	0.9276	0.9497	0.9710	0.9305	0.9520	0.9727		
a	- 34.34	- 30.55	- 23.91	-15.26	-13.61	-10.72		
Ь	77.93	68.92	52.09	39.90	35.98	28.67		

Results	for	E,	of	the	samples	by	different	methods
		a			-	-		

TABLE 3

Note: a is the slope, r is the linear correlation coefficient.

5). The activation energies of decomposition of the samples were estimated by the methods of Kissinger [4] and the simple Ozawa [2,3] methods (Tables 2 and 3).

Formula of Kissinger

$$\ln(\phi/T_{\rm m}^2) = \ln(AR/E_{\rm a}) - E_{\rm a}/R(1/T_{\rm m})$$

Simple formula of Ozawa

 $\log \phi = -0.457 E_{\rm a}/(RT_{\rm m}) + C$

In the formula, ϕ is the heating rate and $T_{\rm m}$ is the peak temperature.

CONCLUSIONS

1. Our experiments show that the ΔH values of the three borates decrease with increasing pressure (see Fig. 6).

2. The activation energies E_a increase to maxima and then decrease again as the pressure increases (see Fig. 7).

Fig. 7. $E_a - P$ curves.

3. At 1 MPa and 2 MPa pressure: ΔH (inderite) > ΔH (kurnakovite) > ΔH (macallisterite); at 4 MPa pressure: ΔH (kurnakovite) > ΔH (inderite) > ΔH (macallisterite).

4. At high pressure (1, 2 and 4 MPa): E_a (inderite) > E_a (kurnakovite) > E_a (macallisterite).

Note: ΔH and E_a values at normal pressure are results from our previous work.

REFERENCES

- 1 H.E. Kissinger, Anal. Chem., 29 (1957) 1702.
- 2 T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.
- 3 T. Ozawa, J. Therm. Anal., 2 (1970) 301.
- 4 Chen Qiyuan and Chen Xinmin, Thermochim. Acta, 123 (1988) 61.