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Abstract 

Two features associated with the interpretation of thermoanalytical crystallization exper- 
iments are investigated. First, the generality of the assumption of site saturation is 
examined. Since this assumption produces a major simplification of the exact expression for 
the volume fraction crystallized, the domain of applicability of this approximation is 
explored. Homogeneous crystal nucleation is examined and a broad range of crystallization 
parameters are considered. Next, an examination is given of a class of models which invoke 
an Arrhenian assumption for K(T), the crystallization rate constant, and determine crystal- 
lization activation energies from plots of ln(ln(1 - Xl- ‘1 versus l/ T. Finally, a discussion is 
presented of the physical interpretation of the activation energies. 

INTRODUCTION 

DTA and DSC techniques have been used extensively to study the 
crystallization behavior of glasses [l-lo]. These methods are well adapted 
for this purpose since data may be acquired rapidly, and a wide range of 
heating (cooling) rates are possible. 

Although many articles have discussed the interpretation of thermoana- 
lytical experiments [ll-251, several years ago Yinnon and Uhlmann [26] 
indicated that all past analyses used the Avrami equation [27] and an 
Arrhenian form for the temperature dependence of the reaction rate 
constant, K(T). However, Yinnon and Uhlmann [26] have noted that the 
latter assumption is often invalid. Also, Weinberg and Kapral [28] have 
shown that the Avrami equation is inadequate to treat systems of finite size 
and which exhibit non-random nucleation. 

Recently, the use of an Arrhenian assumption for the analysis of 
DTA/DSC experiments was examined by the present author [29]. How- 
ever, the latter investigation was limited in two respects. First, the condi- 
tion of site saturation was assumed without providing a detailed discussion 
of its applicability. Site saturation corresponds to the case where all 
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nucleation is completed prior to crystal growth, and hence the entire 
temperature dependence of K(T) arises through the growth process. 
Second, only the peak crystallization method [25] of analysis was consid- 
ered. 

The present work examines the following issues. The range of applicabil- 
ity of the site saturation approximation is explored. The use of this 
approximation greatly simplifies the mathematical interpretation of ther- 
moanalytical experiments, and thus its region of validity should be delin- 
eated. In the performance of this investigation, only homogeneous crystal 
nucleation will be considered. This restriction avoids potential pitfalls 
associated with the use of the Avrami equation, and also permits one to 
write more definitive expressions for the crystal nucleation rate. 

The volume fraction crystallized, X(T), versus T (temperature) method 
of analysis is also considered. In particular, the validity of the Arrhenian 
assumption is explored for several crystal growth models. 

The final section presents a summary and evaluation of the results, and 
contains a discussion of the physical interpretation of the activation energy. 

However, to begin, the usual governing equations and standard assump- 
tions are reviewed. 

GOVERNING EQUATIONS AND STANDARD ASSUMPTIONS 

For an isothermal crystallization process with constant nucleation rate, 
I, and growth rate, g, and spherical growth, the volume fraction trans- 
formed as a function of time X(t), is given by the usual Avrami expression 
[301. 

X(t) = 1 - exp( - $rg31t4) = 1 - exp( -Kt4) (1) 

In eqn. (1) K (or sometimes K1i4), the reaction rate constant, can be 
readily identified. Note that in this case the temperature dependence of K 
arises from both Z(T) and g(T). For a non-isothermal experiment, under 
similar assumptions, the fraction transformed is [26] 

X(t) = 1 - exp{ - +rp(T)[[g(t’)dr.l8) (2) 

Here the identification of the reaction rate constant is not at all clear. If 
one assumes that a constant heating (cooling) rate is employed then eqn. 
(2) can be written in terms of temperature integrals 

ln(1 -X)-i = $rRe4 (Z(f)[ jf-g(T’)dTj3di. 

In eqn. (3) R is the heating (cooling) rate and To is the temperature at the 
start of the experiment. 
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As discussed by Yinnon and Uhlmann [26], several different approaches 
have been used to analyze data from thermoanalytical experiments. One 
class of method [12,17,25] relies on the identification and use of the peak 
crystallization rate temperature, Tp. In this approach various approxima- 
tions are made to eqn. (31, and ultimately equations are derived involving 
relationships between Tp and R. Crystallization activation energies are 
found from the slopes of plots of f(R, T$ versus T;‘, where f(R, T,) 
represents some particular function of heating rate and peak crystallization 
temperature. The most widely utilized version of this technique is the 
Kissinger methods [25]. However, since this method was examined in a 
previous work [29], it will receive no further attention here. 

A second class of method [22,23,31] has utilized approximate forms of 
eqn. (31, and concludes that plots of ln(ln(1 -X)-l versus l/T should be 
linear. The slopes of such plots have been used for the determination of 
activation energies of crystallization. These techniques have invariably used 
an Arrhenian assumption, and it is the validity of this assumption which is 
analyzed herein. 

Finally, it should be remarked that there is one approach to the 
interpretation of non-isothermal crystallization experiments which is almost 
completely rigorous. In the analysis given by Ozawa [14] only the validity of 
the Avrami equation was assumed. Hence, for systems which satisfy the 
assumptions inherent in the derivation of the Avrami equation, Ozawa’s 
method is exact. 

SITE SATURATION 

If the condition of site saturation applies, then the analysis is greatly 
simplified since eqn. (3) can be written as 

ln(ln(1 -X)-l) = In C + 3 ln/rg(T’) dT’ 
=l 

(4) 

In eqn. (4) C = $rK4N, and is constant. N is the integral of the nucle- 
ation curve. 

In order to assess the reasonableness of this approximation, the overlap 
of homogeneous crystal nucleation and crystal growth curves will be in- 
spected for a variety of conditions. Since precise values of the overlap are 
not required, simple expressions for the nucleation and growth rates will be 
employed. 

The nucleation rate is given by the following standard expression [32]: 

(5) 

In eqn. (5) T, is the temperature divided by T, (the melting temperature), 
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p is the entropy of fusion in units of the gas constant, TJ is the shear 
viscosity, and I,, is a constant. The precise value of I, is unimportant since 
normalized nucleation rates are employed. Equation (5) contains the Turn- 
bull approximation [33] for the liquid-crystal surface tension, and cr is the 
corresponding Turnbull proportionality constant. Finally, the approxima- 
tion that there is zero difference in specific heats between glass and crystal 
was used. The shear viscosity is taken to have Fulcher temperature depen- 
dence; i.e. 

The cases of normal and screw dislocation growth are considered. Hence, 
the crystal growth rate may be written as [34] 

g= $[I-exp( -?)I 

where f = 1 for normal growth, and f = AT, = (1 - T,) for screw dislocation 
growth. 

From an inspection of eqns. (5-7) one may see that the overlap between 
nucleation and growth curves depends upon the values of the four parame- 
ters cy, p, b, and Td. Let us consider these in turn. The Turnbull parameter 
assumes values in the range l/3 < LY G l/2. Also, the value of cy only 
affects the position of the nucleation curve. Since the maximum of the 
nucleation curve will shift to higher reduced temperatures as cy decreases, 
the overlap between nucleation and growth curves will be large for smaller 
(Y values. In order to provide a conservative estimate (i.e. overestimate) of 
the degree of overlap (Y = l/3 is selected in all cases. The value of j3 
affects the position of both nucleation and growth curves. As p becomes 
smaller the nucleation curve shifts to larger T, and the growth curve moves 
to lower T,. Hence, decreasing /3 proves to be quite effective in increasing 
the overlap. Increasing values of b and T, will tend to move both the 
nucleation and growth curves to higher reduced temperatures. Since the 
nucleation curve shifts somewhat more than the growth curve, larger values 
of the viscosity parameters favor increased overlap. The value of T,, 
however, appears to be more important in determining the location of the 
nucleation curve maximum than b. For example, for p = 2 and b = 22, an 
Arrhenius temperature dependence of the viscosity (i.e. Td = 0) produces a 
maximum nucleation temperature at T, = 0.63, while for T,,, = 0.4 the 
maximum occurs at T, = 0.75. In contrast, for /3 = 2 and T,, = 0.4 a change 
of b from 35.7 to 15, only shifts T, from 0.78 to 0.73. 

In order to draw more definite conclusions, however, the specific growth 
laws must be employed. For the case of screw dislocation growth p > 2. In 
order to select a nearly worse case scenario (i.e. maximum overlap) the 
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Fig. 1. Overlap of nucleation and screw dislocation growth curves; (Y = l/3, B = 2.5, 
b = 18.42, and Td = 0.4. 

following choice of parameters is made: (Y = l/3, p = 2.5, b = 18.42, and 
7” = 0.4. The normalized nucleation and growth curves for this set of 
conditions is shown in Fig. 1. It is observed that the overlap is virtually nil. 
Thus, for homogeneous nucleation followed by screw dislocation growth, 
one expects in the great majority of instances the nucleation-growth curve 
overlap to be negligible, and thus site saturation a valid approximation. 

However, for the case of normal growth the situation is somewhat 
different since small /? values are possible. In order to illustrate this point 
a portion of the nucleation and growth curves for the parameter selection 
a = l/3, /3 = 0.4, b = 22, and T,.,, = 0 is shown in Fig. 2. An Arrhenius 
temperature dependence of the viscosity was assumed since this is consis- 
tent with the observations for the few inorganic glasses which exhibit 
normal growth [35]. Clearly, there is some degree of overlap between 
nucleation and growth curves. Does this feature invalidate the site satura- 
tion approximation? It is shown below that overlap between the nucleation 
and growth curve limits the range of applicability of the site saturation 
approximation, but does not totally invalidate it. 

The volume fraction transformed as a function of final heating tempera- 
ture was computed using the precise expression (eqn. 3) and the approxi- 
mate expression where site saturation was invoked (eqn. 4) for the values of 
the parameters used to produce Fig. 2. The percentage error in log(l - X>- ’ 

from the use of site saturation was computed as a function of upper 
heating temperature. The results are shown in Fig. 3. It is observed that for 
sufficiently large final heating temperature the error in the use of the site 
saturation approximation is small. 
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Fig. 2. Overlap of nucleation and normal crystal growth curves; LY = l/3, p = 0.4, b = 21.87, 
and Tfi = 0. 

This latter result can be explained in the following manner. Equation (3) 
can be rearranged to read 
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Fig. 3. The percentage error in log(1 - X>-’ from the use of site saturation approximation 
vs. upper heating temperature. 
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TABLE 1 

Ratio of integrand to its maximum value in eqn. (8a) as a function of y for two different 
upper limits of integration 

T, = 0.8 T, = 0.95 

Y ~/Lax Y ~/4mx 

0.084 1 0.006 1 
0.124 0.988 0.011 0.956 
0.180 0.872 0.017 0.778 
0.259 0.657 0.028 0.518 
0.369 0.391 0.045 0.264 
0.520 0.155 0.070 0.095 

with 

j-c > ‘g T' dT' 

YE ‘0 
/:, ( ) g T’ dT’ 

and 

f(y) = 1 - 3y + 3y2 - y3 

( w 

(84 
If one approximates f(y) by unity, then this is equivalent to assuming site 
saturation. However, it is clear that during the course of integration from 
To to T, f(y) must vary from 1 to 0. Therefore, for smaller values of T, 
f(y) = 1. Thus, if the integrand becomes negligible for values of y where 
f(y) deviates significantly from unity, then site saturation will be a good 
approximation. One can show that the maximum value of the integrand 
must lie at T slightly below where the maximum nucleation rate occurs. 
The rate of decline of the integrand from its maximum value depends not 
only upon the overlap of the nucleation and growth curves, but also upon 
the upper limit of integration (final heating temperature). This feature is 
illustrated in Table 1. For small y, f is close to unity. For an upper heating 
temperature of 0.95, as the integrand is reduced to less than 0.1 of its 
maximum value, y grows no larger than 0.07. Hence, one anticipates that 
site saturation will be valid. This expectation is borne out by the results 
shown in Fig. 2. However, if the upper heating temperature is 0.8, then 
f( y ) differs significantly from unity over a region where the integrand is not 
small compared to its maximum value. Thus, site saturation will be a poor 
approximation in this case. 

Since site saturation will be a good approximation whenever the nucle- 
ation and growth curves show little overlap, or when there is overlap but a 
sufficiently high final heating temperature is selected, eqn. (4) will be used 
in the following section. 
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TEMPERATURE DEPENDENCE OF VOLUME FRACTION CRYSTALLIZED 

The temperature (or time) dependence of the volume fraction of mate- 
rial transformed in a non-isothermal DTA/DSC experiment depends upon 
the nature of the crystal growth law. Two cases are considered below. 

For normal crystal growth with an Arrhenius form for v(T), combined 
use of eqns. (4), (6) and (7) yields 

+ln(ln(l -X)-l) - $lnC’= ln/rT. 1 - xp - -[ e ( y)]exp[-i) dT, (9) 

The constants In g, and -a have been incorporated into C’. The 
integral appearing on the right side of eqn. (9), IR, can be evaluated 
analytically to obtain 

- $[exp( -y,)(l -H(Y,)) - exp(P> ew(--4(l -H(zA)l (lo) 

In eqn. (lo), y = b/T, and y,, yi are y evaluated at the melting tempera- 
ture and lower integration limit, respectively. Also, in this equation z = (1 
+ P/Y,)Y = (I+ y)y, and z,, z1 are defined in a manner similar to ym, 

y,. The function of H(x) is defined by 

H(x) =x exp(x)E,(X) (11) 

where E,(x) is the first exponential integral function [36]. If one selects T,, 
as room temperature, then the second term in eqn. (10) (which contains y, 
and t,) is typically vanishingly small and may be neglected. If one takes the 
logarithm of eqn. (10) and uses eqn. (9), then one finds 

+ln(ln(l -X)-l) -D = -y-In y 

+ln[l --H(y) -exp(P> exp(-Yy)(l -H(z))] 

(12) 

where D is a new constant. One observes that if the quantity within 
brackets on the right side of eqn. (12) is nearly constant, then a plot of 
tln(ln(1 -X)-l) versus -y - In y should give a straight line with unit 
slope. If one uses the large argument expansion of H and solely retains the 
first term in the expansion, then one obtains 

fln(ln(1 -X)-i) -D = -y - 2 log y + log 1 - 
[ 

exp(P) exp( - Yy) 

l+Y I (13) 
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Fig. 4. The negative of the logarithm of the integral of the normal growth expression vs. 
y +2 In y. p = 1.3, y,,, = 12, and T, = 0. Solid line represents approximate calculation and 
closed points precise computation. Solid curve through points is best linear fit to precise 
computation. 

For sufficiently large y the last term on the right of eqn. (13) may be 
neglected, and one predicts that a plot of ~ln(ln(l -X)-r) versus -y - 
2 In y should give a straight line with unit slope. 

The latt?r result is essentially the one obtained by Coates and Redfern 
[22] and Sestik [23] using an Arrhenius assumption for K(T). These 
authors found that a plot of tln(ln(1 -X>-‘> - 2 In T versus l/T should 
yield a straight line with slope (-E/R), where E is the activation energy 
for crystallization. If one recalls that y -b/T, then not only does the 
correspondence with the Coates-Redfern-Sestak results become clear, but 
also one realizes that the activation energy can be identified as the 
activation energy for viscous flow. 

In order to test the viability of this approximation, In Ia was computed 
using the precise expression (eqn. (10)) and the right side of eqn. (13) 
neglecting the third term. The approximate calculation corresponds to the 
assumption of an Arrhenian form of the temperature dependence of K(T). 
The results are shown in Fig. 4, where log IR is plotted versus -y - 2 In y. 
Several features of this figure warrant comment. First, one notes that the 
approximate calculation is poor, and would result in a large error for the 
predicted volume fraction transformed. However, the determination of the 
activation energy only relies upon the calculated slope. In reduced units, as 
indicated previously, the slope must be unity. Although the precise calcula- 
tion differs significantly from the approximate one, it too produces nearly a 
linear relationship between In I, and -y - 2 In y. However, the slope of 
the line providing the best fit to the exact calculation is about 70% of the 



102 

In (I) = -4 3988+ 0 93581x 

-40 -30 -20 -10 

x=-z-h 

Fig. 5. The logarithm of the integral of the screw dislocation integral vs. - z -In z. p = 4, 
y = 6, and T, = 0.4. 

one found using the approximate evaluation and thus its use would lead to 
a similar error in the activation energy. 

Next, let us turn to screw dislocation growth where, aside from a 
constant, the growth rate is given by 

g = (1 - T,) exp 
(T,zlJ[l-Cexp( -:)I (14) 

where C = exp t/3>. The integral of the growth rate was computed numeri- 
cally for several choices of the growth parameters. The results of a typical 
calculation are illustrated in Fig. 5, where the logarithm of the integral of 
the growth rate has been plotted versus --z - In z, and z = by = b/CT, - 
7”). One observes, once again, that the curve is nearly linear. Also, here, 
the slope is quite close to unity. However, it should be noted that z is not 
inversely proportional to temperature, but z = l/(7” - 7”). In addition, 
one sees that departure from linearity occurs at smaller values of I z I. 

In order to investigate the origin of the nearly linear relation exhibited in 
Fig. 5 an approximate, but quite accurate, analytical result for the integral 
of the growth rate was derived. One may write the integral of eqn. (14), Isd, 
as the difference between two integrals, Isd = I1 - 12, where 

(1W 
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If one takes the lower temperature, T,, = 0 (which introduces virtually no 
error), then one obtains the precise result given in eqn. (16). 

I,= t exp(-z)[jlT,,+ :)(1-*(z))- g] (16) 

All quantities in eqn. (16) retain their former definitions. If one introduces 
y as the integration variable in eqn. (15b) and uses T,, = 0, then one finds 

I* = c / =& exp( - b) 

Ye Y2 
e,,i l~~y)[l-%- i] (17) 

Equation (17) could not be integrated, but it was found that if y, is not too 
small, then exp( -py/(l + T,y)) can be approximated quite well by D/y”, 
where D and v are constants. This feature is illustrated in Fig. 6, where the 
open circles give the computed values of the former quantity and the solid 
line gives the latter fit. Thus, if one makes the above replacement in eqn. 
(17), one obtains 

I2 = CD[(l - T,,)l(z,q) -+,q + l)] Wa) 

and 

I(z,q) = -bq-’ exp( -2) i 
$-4 

j=l (1-q)(2-q)-..(j-q) 

bV(z,q - 3) 

+ (l-4)(2-4)(3-4) 
W) 
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I(z,q + 1) = -bq exp( -2) 5 
zj-(4+1) 

j=l (l-(q+l))"'(j-(q+l)) 

b41( z,q - 3) 

+ (1-q)(2-q)(3-W-q) 

In eqns. (Ha-c) q = 2 + v and 

I(q,q - 3) = b-“r$z,z) (19) 

where I’(a,t) is the incomplete gamma function and 1 - a = Y - 2. If the 
incomplete gamma function is expanded then one finds 

Therefore, from an inspection of eqns. (16) and (20), one notes that 
Isd a exp( -z)/z. Although the coefficient of exp( -z)/z is non-negligible, 
it can be shown that for sufficiently large z it is a very slowly varying 
function of z. Since large z corresponds to relatively small T,, one 
anticipates linearity in the transformation plot if the final heating tempera- 
ture is not too high. For the particular values of the parameters chosen in 
the present calculation (p = 4, b = 6, and Ta = 0.4), a plot of fln(ln(1 - 
X,1-‘> versus --z - In .z will be linear, with slope of 0.98 up to a reduced 
temperature of about 0.8. If b is smaller, then linearity with nearly unit 
slope will be observed over a more restricted range of T,. For example, for 
b = 3, one observes linearity with slope of 0.99 to a reduced temperature of 
about 0.7. As T,, decreases the fit of log I versus --z - In z to a linear 
plot becomes poorer, and the slope deviates more significantly from unity. 
This feature is illustrated in Fig. 7, where the values of b and j3 remain 
unchanged, but T, = 0, corresponding to an Arrhenius temperature depen- 
dence of the viscosity. One can improve “the linearity” by restricting the 
range of T, to T, < 0.8. The procedure would remove the three points in 
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Fig. 7. As Fig. 5, but T,,, = 0. 

Fig. 7 corresponding to the lowest values of z. However, the slope of the 
resulting line would still deviate significantly from unity. In fact, the reason 
that the corresponding normal growth plot (i.e. Fig. 4) exhibits such a small 
slope is due to the assumption that the viscosity is Arrhenius. 

DISCUSSION 

Most previous analyses of thermoanalytical crystallization experiments 
have utilized some modified form of eqn. (1) (valid for isothermal experi- 
ments) to describe non-isothermal experiments. Furthermore, almost in- 
variably the reaction rate constant, K(T), is assumed to have an exponen- 
tional form containing an activation energy, E,. The constant E,, termed 
the activation energy for crystallization, has been measured and reported in 
a multitude of articles. Yet, this quantity is never well defined. Although 
many of the procedures which lead to standard interpretations of 
DTA/DSC experiments appear untenable, quite remarkably the resulting 
equations usually prove adequate for the analysis of experiments. 

Herein, and in a previous work [29], an attempt is made to understand 
and explain this seeming paradox. In ref. 29, an analysis of the Kissinger 
method was given, and here the other standard type method of interpreta- 
tion is examined. In both cases the site saturation assumption is invoked. 

Site saturation will be valid if the nucleation and growth curves are well 
separated. It was shown that if crystal nucleation occurs homogeneously, 
then for most typical cases involving simple inorganic oxide materials, the 
nucleation and growth curves are significantly displaced from one another. 
Furthermore, it was demonstrated that even if overlap does occur, site 
saturation is a reasonable approximation if one restricts the analysis to 
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sufficiently high temperature in a DTA/DSC heating experiment. There- 
fore, although caution must be used, for the particular case considered in 
this work site saturation is applicable. 

Next, the use of a $n(ln(l -X)-l) versus l/T plot for the determina- 
tion of the activation energy was considered. Several comments and obser- 
vations are warranted. First, for normal growth with Arrhenius tempera- 
ture dependence of the viscosity such plots are very close to linear. 
However, as we can see from inspection of Fig. 4, the use of eqn. (13) with 
neglect of the third term on the right side of this equation would give the 
incorrect slope. In other words, fln(ln(1 -X)-i) versus l/T is linear, but 
the slope of this plot does not necessarily have a simple interpretation. As 
ym increases (i.e. b increases or T, decreases) the curves shown in Fig. 4 
would tend to approach one another. In the limiting case of coincidence, 
the slope of the plot would be proportional to the activation energy for 
viscous flow. For screw dislocation growth with a Fulcher form of the 
viscosity the nature of these plots will depend upon the parameters T,, b, 
and /3, as mentioned previously. For normal growth, p varies over a 
smaller range and hence its value is less significant. However, for screw 
dislocation growth p can assume a broad range of values and thus /3 is 
more important in this case. As noted, for Fulcher viscosities the appropri- 
ate plots should be iln(ln(l -X)-l) versus l/(T - T,). For Td = 0.4, 
which is a typical value for several common inorganic glasses, and for 
sufficiently large b (e.g. Fig. 51, the latter plots will be linear with slopes 
close to unity. Hence, the slopes can be used for the determination of the 
activation energy for viscous flow. The slope approaches closer to unity for 
larger values of p and b. 

In summary, it is observed that plots of tln(ln(l -X)-i) versus l/T are 
expected to be nearly linear often. However, only for certain values of the 
parameters which control crystallization may the slope be simply associated 
with an activation energy. Finally, it was shown that this activation energy 
for crystallization is merely the activation energy for viscous flow. 
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