Correlation of heats of mixing data by the NRTL and UNIQUAC models. Part 2. Predictions of the calorimetric properties

Y. Demirel, H.Ö. Paksoy and H. Gecegörmez

Faculty of Art and Science, University of Çukurova, 01330 Adana (Turkey) (Received 26 April 1991)

Abstract

Using heats of mixing data only, the temperature dependent parameters of the local composition models NRTL and UNIQUAC have been estimated and presented in the first part of this series. Here, these parameters are employed to predict the calorimetric properties: these are the heats of mixing $h^{\rm E}$, partial molar heats of mixing at infinite dilution ΔH_i and excess heat capacities $C_p^{\rm E}$. Limiting activity coefficients are also estimated at different isotherms. All the predictions have been compared with experimental values.

The NRTL and UNIQUAC models satisfactorily represent heats of mixing data at different isotherms for highly non-ideal and partially miscible systems. However, predictions in the region of high dilution are not always satisfactory, especially for associating mixtures. The values of C_p^E obtained from the differentiation of equations for h^E are poor. Also, the predicted values of γ_i^{∞} show large deviations from the experimental values.

INTRODUCTION

Heats of mixing data determine the dependence for the activity coefficients, hence the relative volatilities, on the temperature profile inside a distillation column. In vacuum systems, especially, the combination of low pressure and a large number of trays widens the temperature range within the fractionating columns. Consequently, $h^{\rm E}$ and its variations with temperature are significant. As Murthy and Zudkevitch [1] state, more data on heats of mixing are needed for reliable and economic designs of important industrial separations.

Heats of mixing data are also needed for testing models for liquid mixtures and understanding the effect of molecular structure on the thermodynamic properties of mixtures. Predictions of $h^{\rm E}$ data [2,3] for a large number of liquid mixtures of various types have recently been obtained from the local composition models of NRTL [4] and UNIQUAC [5], the parameters of which are estimated by using $h^{\rm E}$ and $g^{\rm E}$ data simultaneously. Later, these parameters are also used to predict partial molar heats of mixing at infinite dilution [6].

In order to facilitate more satisfactory calorimetric predictions over a wide range of temperatures, the parameters of the NRTL and UNIQUAC models have been estimated using only $h^{\rm E}$ data for 57 systems of liquid mixtures, and are presented in Part 1 of this series. In this study, the parameters are employed to predict the calorimetric properties, namely heats of mixing $h^{\rm E}$, partial molar heats of mixing at infinite dilution, ΔH_i , and excess heat capacities $C_p^{\rm E}$ for various temperatures. Limiting activity coefficients γ_i^{∞} are also estimated. The systems considered represent a wide variety, including associating and partially miscible mixtures.

CALORIMETRIC PREDICTIONS

Thermal effects that accompany the mixing of polar and non-polar compounds and production of non-ideal mixtures may be collected in calorimetric properties. These are due mainly to any one, or a combination, of the following factors [7]: (1) the difference in the molecular interaction energy between like and unlike molecules; (2) the formation of strong interactions between unlike molecules, such as hydrogen bonding; (3) differences in size and shape of the component molecule. The first factor makes a positive contribution to $h^{\rm E}$ whereas the second makes a negative contribution.

The values of $h^{\rm E}/x_1x_2$ at liquid compositions $x_1 = 0$ and $x_2 = 0$ are identical with partial molar heats of mixing of component 1 and 2, ΔH_1 and ΔH_2 respectively, at infinite dilution. For better understanding of solution behaviour, it is advantageous to examine derivative excess properties in the limit of infinite dilution, where a single solute molecule is completely surrounded by the solvent. Since solute-solute interactions are no longer present, infinite dilution excess properties reflect almost completely unlike pair interactions, and yield information about such intermolecular forces [8].

Values of C_p^E indicate the temperature dependence of h^E , and should not be attributed to the difference in numbers of hydrogen bonds on mixing, but depend rather on the difference in numbers of hydrogen bonds broken with increase in temperature between the pure state and the solution state. The order of the absolute magnitude of C_p^E appears to be in agreement with that of the formation of strong hydrogen bonds and to be inversely proportional to that of the steric effect, by which unstable associate species are formed in mixture. The more the steric effect exists in the pure alcohol, the more the hydrogen bonds are broken down with increase of temperature [9]. C_p^E is also related closely to the behaviour of component molecules in the solution state, thus it will be connected with the local concentration fluctuation in solution [10].

Equations for $h^{\rm E}$ obtained from the models were given in the first part of this series. Using the NRTL model, ΔH_i and $C_p^{\rm E}$ are estimated from the

following equations

$$\Delta H_1 = \frac{T}{T'} \Big\{ c_2 + R\tau_{21}T' + G_{12} \Big[(c_4 + R\tau_{12}T')(1 - \tau_{22}\alpha_{12}) - RT\tau_{12}^2 c_6 \Big] \Big\}$$
(1)

$$\Delta H_2 = \frac{T}{T'} \left\{ c_4 + R\tau_{12}T' + G_{21} \left[(c_2 + R\tau_{21}T')(1 - \tau_{21}\alpha_{12}) - RT\tau_{21}^2 c_6 \right] \right\}$$
(2)

$$\begin{split} C_{p}^{E} &= \frac{Rx_{1}x_{2}G_{21}}{T'S_{1}^{2}} \left\{ T\beta_{1} \bigg[2(T-273.15)\tau_{21} - \frac{\delta_{1}}{T} \bigg] + x_{1}Tc_{6}\tau_{21} \bigg(\frac{2c_{2}}{RT'} + \tau_{21} \bigg) \\ &+ \frac{w_{1}S_{1}\delta_{1}}{T'} \\ &+ \bigg[\frac{c_{2}\beta_{1}}{R} + \tau_{21}(T'\beta_{1} - x_{1}c_{6}T\tau_{21}) \bigg] \bigg[\frac{w_{1}}{T'} \bigg(1 - \frac{2x_{2}G_{21}}{S_{1}} \bigg) - \frac{T+273.15}{T-273.15} \bigg] \bigg\} \\ &+ \frac{Rx_{1}x_{2}G_{12}}{T'S_{2}^{2}} \bigg\{ T\beta_{2} \bigg[2(T-273.15)\tau_{12} - \frac{\delta_{2}}{T} \bigg] + x_{2}Tc_{6}\tau_{12} \bigg(\frac{2c_{4}}{RT'} + \tau_{12} \bigg) \\ &+ \frac{w_{2}S_{2}\delta_{2}}{T'} \\ &+ \bigg[\frac{c_{4}\beta_{2}}{R} + \tau_{12}(T'\beta_{2} - x_{2}c_{6}T\tau_{12}) \bigg] \bigg[\frac{w_{2}}{T'} \bigg(1 - \frac{2x_{1}G_{12}}{S_{2}} \bigg) - \frac{T+273.15}{T-273.15} \bigg] \bigg\} \end{split}$$

$$(3)$$

where

$$\tau_{12} = (g_{12} - g_{22})/RT; \ \tau_{21} = (g_{21} - g_{11})/RT$$

$$G_{12} = \exp(-\alpha_{12}\tau_{12}): \ G_{21} = \exp(-\alpha_{21}\tau_{21})$$

$$(g_{21} - g_{11}) = c_1 + c_2/(T - 273.15)$$

$$(g_{12} - g_{22}) = c_3 + c_4/(T - 273.15)$$

$$\alpha_{12} = c_5 + c_6/(T - 273.15)$$

$$S_1 = x_1 + x_2G_{21}; \ S_2 = x_2 + x_1G_{12}$$

$$\delta_1 = c_2/R + T'\tau_{21}; \ \delta_2 = c_4/R + T'\tau_{12}$$

$$w_1 = \alpha_{12}\delta_1 + T\tau_{21}c_6; \ w_2 = \alpha_{12}\delta_2 + T\tau_{12}c_6$$

$$\beta_1 = S_1 - x_1\tau_{21}\alpha_{12}; \ \beta_2 = S_2 - x_2\tau_{12}\alpha_{12}$$

$$T' = (T - 273.15)^2$$

Here, $g_{21} - g_{11}$, $g_{12} - g_{22}$ and α_{12} are the energies of interaction in J mol⁻¹ and the non-randomness parameters respectively. The terms c_1 , c_3 and c_5

are the values of the parameters at 0 °C, while c_2 , c_4 in J K mol⁻¹ and c_6 are the coefficients of temperature.

Using the UNIQUAC model ΔH_i and C_p^E are estimated from the following equations

$$\Delta H_1 = Rq_1' [(d_1 + 2d_2/T) + \tau_{12}^* (d_3 + 2d_4/T)]$$
(4)

$$\Delta H_2 = Rq_2' [(d_3 + 2d_4/T) + \tau_{21}^* (d_1 + 2d_2/T)]$$

$$Rq_2' \times \Theta \quad \tau^*$$
(5)

$$C_{p}^{E} = \frac{Rq_{1}x_{1}\Theta_{2}\tau_{21}}{T^{2}(\Theta_{1} + \Theta_{2}\tau_{21}^{*})^{2}} \Big[\Theta_{1}(d_{1} + 2d_{2}/T)^{2} - 2d_{2}(\Theta_{1} + \Theta_{2}\tau_{21}^{*})\Big] \\ + \frac{Rq_{2}'x_{2}\Theta_{1}\tau_{12}^{*}}{T^{2}(\Theta_{2} + \Theta_{1}\tau_{12}^{*})^{2}} \Big[\Theta_{2}(d_{3} + 2d_{4}/T)^{2} - 2d_{4}(\Theta_{2} + \Theta_{1}\tau_{12}^{*})\Big]$$
(6)

where
$$\tau_{12}^* = \exp(-a_{12}/T); \ \tau_{21}^* = \exp(-a_{21}/T)$$

 $a_{12} = d_3 + d_4/T; \ a_{21} = d_1 + d_2/T$

$$\Theta_1 = x_1 q_1' / (x_1 q_1' + x_2 q_2'); \ \Theta_2 = x_2 q_2' / (x_1 q_1' + x_2 q_2').$$

Here a_{21} and a_{12} are the interaction parameters in K. Terms d_1 and d_3 , in K, and d_2 and d_4 are the coefficients related to the parameters a_{ij} ; R and q'_i are the gas constant in J mol⁻¹ K⁻¹ and the molecular interaction area parameter respectively for pure component *i*.

LIMITING ACTIVITY COEFFICIENTS

The activity coefficient at infinite dilution γ_i^{∞} characterizes the behaviour of a single solute molecule *i* which is completely surrounded by the solvent molecules. It mainly indicates the maximum non-ideality. Due to the Gibbs-Helmholtz equation, the values of γ_i^{∞} are interrelated with the partial molal heat of mixing at infinite dilution

$$\frac{\ln \gamma_i^{\infty}}{(1/T)} = \frac{\Delta H_i}{R} \tag{7}$$

Except for highly solvated and associated mixtures, ΔH_i should be constant over narrow temperature ranges, in which the plot of $\ln \gamma_i^{\infty}$ versus 1/Tshould be approximately linear. Expressions for limiting activity coefficients obtained from the NRTL and UNIQUAC models were given elsewhere [11].

RESULTS AND DISCUSSION

Using the parameters estimated in the first part of this series, calorimetric properties, namely $h^{\rm E}$, ΔH_i and $C_p^{\rm E}$, have been predicted and compared with experimental values. The comparisons are given as average absolute

errors, S, for $h^{\rm E}$ and $C_p^{\rm E}$, while deviations, D_i , are calculated for ΔH_i values.

$$S(h^{\rm E}) = \frac{1}{n} \left[\sum_{i=1}^{n} \left| \frac{h_{i,\text{expt1}}^{\rm E} - h_{i,\text{calcd}}^{\rm E}}{h_{i,\text{expt1}}^{\rm E}} \right| \right] \times 100$$
(8)

$$S(C_p^{\rm E}) = \frac{1}{n} \left[\sum_{n=1}^{n} \left| \frac{C_{p_{i,\text{expt}}}^{\rm E} - C_{p_{i,\text{calcd}}}^{\rm E}}{C_{p_{i,\text{expt}}}^{\rm E}} \right| \right] \times 100$$
(9)

$$D_{i} = \left| \frac{\Delta H_{i,\text{exptl}1} - \Delta H_{i,\text{calcd}}}{\Delta H_{i,\text{exptl}}} \right| \times 100 \tag{10}$$

Here *n* shows the number of data points at each isotherm. The value of $S(h^{\rm E})$ was calculated at each temperature for $h^{\rm E}$ data. The values of D_i indicate the percentage error for each component. The values of $S(h^{\rm E})$ and D_i are given in Table 1.

The values of ΔH_i are finite but indeterminate. Hence the experimental values of ΔH_i were determined by graphical extrapolation of finite concentration data. Although all necessary care has been exercised in the extrapolation stage, the obtained values of ΔH_i are subject to some uncertainty, especially for those systems where the values of h^E/x_1x_2 exhibit a steep change in the highly dilute region. The percentage uncertainties, U_i , based on the average absolute deviation in the extrapolation, have been expressed as

$$U_{i} = \left| \frac{\Delta H_{i,\max} - \Delta H_{i,\min}}{2\Delta H_{i}} \right| \times 100$$
(11)

Here the deviation is taken as one-half of the difference between the maximum $\Delta H_{i,\text{max}}$ and minimum $\Delta H_{i,\text{min}}$ values of the extrapolations. Comparisons of experimental $\Delta H_{i,\text{expt1}}$ and calculated $\Delta H_{i,\text{calcd}}$ partial molar enthalpies at infinite dilution by the models are given in Table 1. For the systems with very high uncertainties no extrapolation was carried out, hence no experimental values of ΔH_i are tabulated.

In the nearly ideal systems 40-42 and 56 and 57 an unusual experimental accuracy is required in VLE measurements, if the Gibbs-Helmholtz equation is to give even the right order of magnitude of $h^{\rm E}$ [37]. For the system 2-propanol-water, the plot of $h^{\rm E}$ versus x shows an S shape for which the predictions are poor, although the average absolute errors are slightly better than those obtained by Battler et al. [22].

In pure alcohol, all the molecules form hydrogen bonds with each other, while each alcohol in the infinite dilution of alcohol in a non-polar compound is surrounded by these molecules and the hydrogen bonds are broken. Hence the values of ΔH_1 for the alcohol-polar liquid systems correspond to the energy change from the pure alcohol state to that in

T (°C)	n	Uncertainties (%)		Percentage average absolute errors $S(h^E)$ and percentage deviations D_i						
		$\overline{U_1}$	U_2	NRT	L		UNI	QUAC		
				s	<i>D</i> ₁	D_2	\overline{s}	<i>D</i> ₁	D_2	
1. Methan	ol(1)-m	ethyl ace	tate(2) [12]							
25	14	2.1	3.2	1.1	4.5	0.6	2.2	2.0	2.2	
35	16	3.0	5.0	1.1	1.7	3.2	1.0	1.2	2.4	
45	10	5.1	3.1	0.6	1.1	0.2	2.4	3.4	9.6	
2. Methan	ol(1)–et	hyl aceta	te(2) [13]							
25	12	5.1	5.0	2.2	7.2	14.5	3.7	4.0	5.5	
35	12	6.2	5.4	1.7	14.9	8.1	3.9	4.3	17.3	
3. Methan	ol(1)–et	hvl forma	te(2) [14]							
25	8	2.5	2.1	0.9	26.4	7.9	4.1	14.3	6.2	
35	11	2.0	2.0	2.0	18.3	5.8	3.6	4.2	75	
45	9	2.1	2.1	1.2	17.6	6.3	2.6	6.7	14.4	
4. Methan	ol(1) - n	-hexane(2) ª [15]	1.2	1,10	0.0	2.0	0.7	±	
25	11		4.3	5.9	_	1.8	5.8	_	10.8	
40	17	_	3.7	7.2	_	4.6	2.6	-	65	
45	17	_	3.6	65	_	19	3.2	_	2.6	
50	17	_	4.2	6.2	_	00	4.0	_	1.0	
5 5 Methan	ol(1)_n.	hentanel	7.2 2) a [15]	0.2		0.9	4.0	—	1.2	
30	8 8		<i>2</i> , [13] <i>1</i> 3	60	_	14 1	10		20.3	
30 45	11	_	3.0	83	-	70	4.7	-	20.5	
4J 60	17	-	3.5	6.2	-	0.6	3.2	-	9.0	
00 6 Methani	، ۱ س_(1)اه	- ater(?)[1/	5.5	0.2	-	0.0	4.2	-	0.2	
5	6 (I)	0.5	יי 1	2.0	22	21	7.0	20 6	10.4	
15	6	0.5	2.1	2.0	2.2	2.1 5 1	7.0	20.0	10.4	
15	0 4	1.0	0.7	0.5	20.2	3.1 16.6	5.9	23.3	5.1	
23 40	0	0.4	1.7	7.4	22.2	10.0	5.1	25.5	4.5	
40 50	0	1.2	0.6	5.7	22.9	14.2	3.9	21.1	0.8	
30 7. Este 1	0	U./	0.0	7.9	17.5	5.4	5.4	19.8	6.2	
7. Ethanol	(1)-met	nyi acetai	e(2)[12]	0.7	1 7	1.0			~ .	
25	11	6.1	6.2	0.7	1.7	1.9	1.7	11.4	5.1	
35	12	5.2	4.0	1.4	0.9	3.7	1.5	10.2	3.3	
)		5.0	5.0	1.3	0.6	3.5	2.5	13.6	8.5	
8. Ethanol	(1)-ethy	acetate	(2)[13]			- -				
25	12	6.2	4.5	1.2	12.9	8.7	2.6	2.6	4.3	
35	16	7.1	5.3	1.3	24.3	14.5	2.8	9.3	4.5	
9. Ethanol	(1)-ethy	I formate	(2)[14]	a –	. .					
25	6	6.3	4.1	0.7	5.4	4.1	4.2	6.2	10.1	
35	13	3.7	4.4	2.2	9.8	6.4	3.1	7.3	5.4	
45	9	3.0	2.6	1.5	15.2	9.9	2.5	9.7	10.5	
10. Ethano	ace	etone(2)[17]	. ·		c =	. .			
25	12	2.0	1.0	0.4	7.2	4.9	2.4	4.2	1.6	
50	12	1.0	2.0	0.3	5.7	4.4	2.3	4.8	6.3	
11. Ethano	ol(1)-tol	uene(2)[[8]	_						
25	26	3.5	5.7	7.8	39.3	31.1	5.2	8.2	12.2	
45	23	4.6	4.6	5.1	61.2	35.6	2.8	6.9	14.7	
60	26	5.7	3.5	48	62.7	178	39	32	92	

TABLE 1

Comparison of experimental and predicted values of $h^{\rm E}$ and ΔH_{ι}

<i>T</i> (°C)	n	Uncertainties (%)		Percer and pe	Percentage average absolute errors $S(h^E)$ and percentage deviations D_i						
		$\overline{U_1}$	U_2	NRTL	NRTL			UNIQUAC			
		•	2	S	D_1	D_2	S	D_1	<i>D</i> ₂		
12. Ethan	$\overline{ol(1)}$ -he	exane(2)	19]						······		
10	24	0.5	0.5	1.3	0.8	0.6	7.2	19.5	5.6		
25	24	1.0	1.2	8.9	9.4	7.0	3.3	18.1	13.3		
45	25	1.4	0.7	10.1	13.5	4.7	12.8	36.8	17.6		
13. Ethan	ol(1)-cv	clohexane	e(2) [20]								
5	10	10.5	1.7	5.8	37.6	3.4	2.8	43.4	21.3		
20	10	0.1	17.5	2.4	36.1	18.6	2.2	24.9	13.7		
35	10	5.0	1.5	1.9	22.8	5.8	2.5	19.2	10.6		
50	10	4.1	2.8	2.0	18.4	3.0	0.8	13.8	9.7		
65	10	5.9	2.9	1.7	13.0	7.4	2.4	8.7	7.9		
14. Ethan	ol(1)-w	ater(2) ^b [21]								
150	18	3.0	0.2	0.8	3.9	0.4	9.6	34.2	10.6		
175	19	0.9	0.6	0.6	4.4	4.8	5.4	3.2	15.4		
200	19	0.2	0.3	1.0	1.5	- 0.1	11.8	16.9	10.4		
15. 1-Pror	panol(1)	-ethvl ace	etate(2) [13	3]							
25	11	6.1	5.2	1.7	9.5	2.7	1.9	0.8	6.9		
35	20	4.1	3.0	1.3	13.0	2.5	1.6	0.1	2.1		
45	9	5.0	2.2	0.9	9.8	2.8	1.3	6.1	1.2		
16. 1-Prot	oanol(1)	-ethyl for	mate(2) [1]	3]							
25	8	4.2	3.1	0.3	12.1	6.8	4.3	8.6	12.2		
35	13	6.3	3.2	1.4	9.0	7.4	2.7	6.1	9.9		
45	9	3.0	3.2	0.9	11.6	9.8	2.4	2.5	0.2		
17. 2-Pror	panol(1)	-ethyl ace	etate(2) [13	31							
25	13	4.3	2.2	0.9	6.9	2.1	1.2	0.6	1.4		
35	18	4.2	7.2	0.9	11.3	1.9	1.9	6.2	0.3		
18. 2-Prop	oanol(1)	-ethyl for	mate(2) [1-	4]							
25	13	5.3	5.1	0.8	16.1	14.1	3.0	8.2	15.9		
35	12	5.0	5.4	1.0	12.1	16.1	1.2	0.8	18.3		
45	11	4.1	3.1	0.7	5.6	10.8	3.1	10.0	14.8		
19. 2-Pror	oanol(1)	- <i>n</i> -heptar	ne(2) [18]								
30	24	2.4	5.6	10.3	13.6	11.9	10.3	2.4	32.4		
45	22	1.4	5.4	6.1	11.3	1.2	8.5	5.6	40.7		
60	21	2.1	2.7	9.8	6.0	17.1	8.0	9.3	3.1		
20. 2-Prop	oanol(1)	-cyclohex	ane(2) [22]]							
20	18	2.7	2.9	5.0	26.6	0.5	6.7	4.3	23.8		
25	18	3.3	1.0	5.8	3.3	15.0	5.9	4.8	30.6		
50	18	1.7	0.7	8.7	18.7	18.3	13.9	35.7	47.4		
21. 2-Prop	oanol(1)	-water(2)	° [22]								
20	15	3.7	4.2	42.7	92.2	42.5	32.5	68.1	60.0		
25	15	2.6	1.5	42.6	93.9	19.8	28.6	69.6	53.4		
30	15	4.9	1.7	48.3	94.0	32.9	41.2	65.0	34.7		
50	15	3.1	2.9	60.1	96.3	81.5	29.9	68.2	50.9		
22. 1-Buta	nol(1)–	n-heptane	e(2) [23,24]	l							
15	9	-	6.8	4.8	-	5.4	18.3	-	57.7		
30	17	-	6.7	15.9	-	51.3	12.2	-	43.6		
45	17	-	4.5	11.1	_	26.9	8.1	-	35.5		
55	9	-	3.5	13.2	_	8.6	9.6	_	24.8		

TABLE 1 (continued)

T (°C)	n	Uncertainties (%)		Percer and pe	Percentage average absolute errors $S(h^E)$ and percentage deviations D_i						
		$\overline{U_1}$	U ₂	NRTI			UNIQ	UAC			
23. 1-Buta 18 22 25 30 24. <i>n</i> -Buta 25 35 25. <i>n</i> -Buta 5 25. <i>n</i> -Buta 5 25. <i>n</i> -Buta 5 25. <i>n</i> -Penta 25 30 45 28. Hexan 15 35 29. <i>n</i> -Hex 15 30. Hepta 15 31. <i>n</i> -Octa 15 55			_	S	<i>D</i> ₁	D_2	S	D_1	D ₂		
23. 1-Buta	.nol(1)-	nitrometh	ane(2) ^a [2	5]							
18	18	1.6	2.7	3.5	0.9	0.3	4.8	17.5	2.6		
22	18	1.9	3.8	2.9	3.1	5.7	2.9	15.6	5.6		
25	18	1.1	4.0	2.8	3.7	13.0	3.5	13.7	14.0		
30	18	1.3	4.6	3.4	5.5	25.0	3.7	0.5	27.5		
24. n-Buta	anol(1)-	ethvl ace	tate(2) [26]								
25	13	2.5	3.3	0.5	4.6	2.3	0.9	2.0	4.7		
35	18	1.9	2.4	2.7	2.6	2.5	2.3	4.0	0.4		
25. n-But:	$\frac{10}{10}$	ethyl forn	nate(2) [26]]	2.0				0.1		
25	14	1.2	2.5	. 0.6	14.3	4.5	3.5	9.9	10.5		
35	11	1.8	2.0	1.3	14.0	10.9	2.2	0.4	16.2		
45	11	12	12	1.2	14.8	2.9	15	5.2	9.8		
26. n-Buts	anol(1)-	methanol	(2) [27]	1.2	14.0	. .,	1.5	5.2	2.0		
5 5	25	0.8	0.8	13	24	13	22	41	41		
25	25	0.0	0.0	15.6	2.4 8 A	34.2	2.2 4 0	30	71		
40	20	0.4	17	10.6	3.0	28 3	52	70	20.2		
77 n-Deni	tanol(1)	u.J _ n-hevan	1.7 P(J) [JJ J8]	10.0	5.1	40.5	3.4	1.4	20.5		
27. n~1 011 25	(1)i	1/ 1	5 K	12	63.0	22	00	14 8	21.0		
20	7	14.1	J.U 1 5	1.5	60.4	2.3	9.9 10.0	20.5	21.0		
15	17	12.2	4.J 5 6	12.5	50.4	20.3	10.9 9 7	30.3 27 0	20.1		
7J 28 Uava-	۲/ (1)	1J.2	0.C [00] (2)	14.3	50.5	20.1	0.7	21.0	50.0		
20. Hexan	O(1) - n	-amylamii	10(2)[29]	04	2.4	6 4	47	15.2	126		
13	19	2.5	2.2	0.0	2.4	0.4 5.4	4./ E A	13.2	12.0		
JJ II	19	2.0 	2.2 (2)[24]	3.3	3.1	3.0	5.4	/.1	18.2		
29. n-Hex	anoi(1)-	- <i>n</i> -octane	2/[24]	25		47	47		00		
10	У 0	-	5.8 1 4	3.5		4.7	4.7	-	8.8 19.5		
20 IT 14	8 	- ,	1.4	2.3	-	ŏ.ŏ	11.8	-	18.5		
50. Hepta	noi(1)-	<i>n</i> -amylam	ine(2)[29]	1.0	16.0	(0	27	100			
15	19	1.8	1.6	1.9	15.9	6.8	3.6	0.8	3.8		
35	19	1.7	1.4	2.7	4.1	4.3	4.3	1.0	10.2		
31. <i>n</i> -Octa	anol(1)-	- <i>n</i> -heptan	e(2)[24]			<i>.</i> -	- .		. -		
15	9	-	12.2	7.3	-	6.2	5.4	-	3.7		
55	9	-	6.6	5.6	-	7.2	4.9	-	7.3		
32. <i>n</i> -Octa	anol(1)-	n-octane	(2)[24]		. –			<i>.</i>			
15	9	12.8	10.8	4.1	1.7	0.5	4.6	69.8	14.2		
25	9	15.9	6.9	6.4	16.7	11.9	1.9	46.0	4.0		
33. <i>n</i> -Octa	anol(1)-	n-amylan	nine(2) [29]								
15	19	3.5	2.7	1.2	4.2	9.5	4.9	10.8	10.9		
35	19	2.1	2.6	2.2	8.3	3.6	3.4	5.0	11.5		
34. Decan	ol(1)- <i>n</i>	-amylami	ne(2) [29]						_		
15	19	3.2	1.6	1.1	7.6	12.2	3.6	2.6	6.9		
35	19	2.2	1.7	3.8	14.9	7.0	3.8	8.2	11.7		
35. Methy	l acetat	e(1)-benz	ene(2) [30]								
25	13	7.5	3.5	2.4	14.9	31.7	3.1	13.5	7.3		
35	12	4.1	11.2	4.5	0.7	13.0	8.1	5.3	16.1		

TABLE 1 (continued)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T (°C)	n	Uncertainties (%)		Percentage average absolute errors $S(h^{E})$ and percentage deviations D_i						
S D_1 D_2 \overline{S} D_1 D_2 36. Methyl acctate(1)eyclohexane(2) [30] 25 11 5.5 4.6 0.4 10.7 8.1 0.5 2.7 2.2 35 11 4.1 4.5 0.7 15.2 11.0 0.6 1.5 0.5 37. Methyl acctate(1)n-hexane(2) [26] 25 14 2.0 6.4 1.2 33.6 6.0 2.7 0.1 6.0 38. Benzene(1)n-heptane(2) [32,33,34] 23 50 4 - 4.7 1.0 - 2.3 0.8 - 2.3 39. Benzene(1)-eyclohexane(2) [34] 25 12 0.2 0.2 1.6 3.0 1.1 0.5 4.2 1.4 40. 1-Chlorohexane(1)-ethylbenzene(2) d [35] 15 17 3.7 3.6 1.1 2.9 6.9 0.8 3.2 6.2 25 19 2.6 4.3 0.6 1.6 2.9			$\frac{(70)}{U_1}$ U_2 $\frac{\text{and}}{NR'}$		- NRT	Ľ	-	UNIQUAC			
36. Methyl acetate(1)-cyclohexane(2) [30] 25 11 5.5 4.6 0.4 10.7 8.1 0.5 2.7 2.2 35 11 4.1 4.5 0.7 15.2 11.0 0.6 1.5 0.5 45 9 5.2 5.0 0.8 13.0 8.2 1.1 0.1 3.1 37. Methyl acetate(1)- <i>n</i> -hexane(2) [26] 25 14 2.0 6.4 1.2 33.6 40.5 2.6 1.7 9.9 45 13 3.7 1.5 1.0 8.3 6.0 2.7 0.1 6.0 38. Benzene(1)- <i>n</i> -heptane(2) [32,33,34] 25 14 2.0 3.4 1.0 1.8 3.4 0.8 1.8 1.3 45 8 3.5 3.4 0.5 1.3 19.7 1.3 4.9 2.3 50 4 - 4.7 1.0 - 2.3 0.8 - 2.3 39. Benzene(1)-cyclohexane(2) [34] 25 12 0.2 0.2 1.1 10.4 6.0 0.5 1.1 1.2 50 12 0.2 0.2 1.6 3.0 1.1 0.5 4.2 1.4 40. 1-Chlorohexane(1)-ethylbenzene(2) ^d [35] 15 17 3.7 3.6 1.1 2.9 6.9 0.8 3.2 6.2 25 19 2.6 4.3 0.6 1.6 2.9 0.4 3.3 1.7 41. 1-Chlorohexane(1)- <i>n</i> -propylbenzene(2) ^d [35] 15 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)-tothecene(2) ^d [35] 15 19 3.4 4.5 0.5 0.9 1.7 0.7 2.3 5.4 25 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)-di- <i>n</i> -butyl ether(2) [31] 5 19 8.1 3.5 1.3 6.5 10.6 5.0 0.2 0.5 44. 1,1,1-Trichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 10 11 11.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 31.72 5 19 8.1 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.2 6.9 2.1 4.5 4.8 0.9 5.5 3.2 44. 1,1,1-Trichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 10 11 1.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35. 11 12.5 4.5 6.9 3.5 4.0 6.3 33.8 0.9 45. <i>n</i> -Heptane(1)- <i>a</i> -anylamine(2) [26] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35. 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. <i>n</i> -Heptane(1)- <i>a</i> - <i>a</i> - <i>a</i>) 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35. 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 47. <i>n</i> -Heptane(1)- <i>a</i> - <i>a</i> - <i>a</i>] 4.1 2.7 4.5 3.1 6.9 36. 14 1.7 2.3 0.9 0.9 1.1.7 9.9 0.4 2.6 4.1 37. <i>n</i> -Heptane(1)- <i>a</i> - <i>a</i> - <i>a</i>] 4.5 0.5 0.9 2.8 1.3 3.5 0.4 48. <i>n</i> -Heptane(1)- <i>a</i> - <i>a</i> - <i>a</i>] 4.5 0.7 0.9 2.8 1.3 3.5 0.4 48. <i>n</i> -Heptane(1)- <i>a</i> - <i>a</i>] 4.5 0.2 3.0 8.9 0.4 1.6 11.4 50 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 51.9 1.4 1.0 0.5 0.9 2.8 1.3 3.5 0.4 51.9 1.4 1.0 0.5 0.9 2.8 1.3 3.5 0.4 51.9 1.1 1.1 0.2 0.9					\overline{s}	<i>D</i> ₁	D_2	s	D_1	D_2	
25 11 5.5 4.6 0.4 10.7 8.1 0.5 2.7 2.2 35 11 4.1 4.5 0.7 15.2 11.0 0.6 1.5 0.5 45 9 5.2 5.0 0.8 13.0 8.2 1.1 0.1 3.1 37. Methyl acetate(1)- <i>n</i> -hexane(2)[26] 25 14 2.0 6.4 1.2 33.6 40.5 2.6 1.7 9.9 45 13 3.7 1.5 1.0 8.3 6.0 2.7 0.1 6.0 38. Benzene(1)- <i>n</i> -heptane(2)[32,33,34] 25 14 2.0 3.4 1.0 1.8 3.4 0.8 1.8 1.3 45 8 3.5 3.4 0.5 1.3 19.7 1.3 4.9 2.3 50 4 - 4.7 1.0 - 2.3 0.8 - 2.3 39. Benzene(1)-cyclohexane(2)[34] 25 12 0.2 0.2 1.6 3.0 1.1 0.5 4.2 1.4 40. 1-Chlorohexane(1)-ethylbenzene(2) ^d [35] 15 17 3.7 3.6 1.1 2.9 6.9 0.8 3.2 6.2 25 19 2.6 4.3 0.6 1.6 2.9 0.4 3.3 1.7 41. 1-Chlorohexane(1)n-propylbenzene(2) ^d [35] 15 19 3.4 4.5 0.5 0.9 1.7 0.7 2.3 5.4 25 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)toluene(2) ^d [35] 15 19 3.4 3.5 1.3 6.5 10.6 5.0 0.2 0.5 31. 1.2 1.2 0.2 0.2 1.4 4.5 4.8 0.9 5.3 2.4 25 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)toluene(2) ^d [35] 15 19 3.4 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.1 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.1 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.2 6.9 2.1 4.5 4.8 0.9 5.3 2. 44. 1,1,1-Trichloroethane(1)-di- <i>n</i> -butyl ether(2)[31] 5 19 8.1 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.2 6.9 2.1 4.5 4.8 0.9 5.3 2. 44. 1,1,1-Trichloroethane(1)-di- <i>n</i> -butyl ether(2)[31] 10 11 11.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35 11 12.5 4.5 6.9 3.5 4.0 6.3 33.8 0.9 45. <i>n</i> -Heptane(1)-acetic acid(2)[26] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. <i>n</i> -Heptane(1)- <i>n</i> -muylamine(2)[29] 15 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 14 1.7 2.5 3.0 8.3 11.6 7.0 2.5 3.0 47. <i>n</i> -Heptane(1)- <i>n</i> -muylamine(2)[29] 15 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 1.0 0.5 0.9 2.8 1.3 3.5 0.4 48. <i>n</i> -Heptane(1)- <i>n</i> -muylamine(2)[29] 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.6 4.1 50 8 0.6 1.6 10 0.5 4.5 0.4 1.7 6.5 40. 1.4 1.0 1.7 6.5 41. 1.7 6.5 41. 7 6.5 41. 1.4 1.0 1.1 1.1 0.7 0.9 0.7 0.4 1.6 11.4 1.5 42. 8 1.3 0.9 0.9 1.1 9.9 0.4 2.6 4.1 43. 1.6 11.4 1.0 0	36. Methy	lacetate	e(1)-cyclo	hexane(2)	[30]						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	11	5.5	4.6	0.4	10.7	8.1	0.5	2.7	2.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	11	4.1	4.5	0.7	15.2	11.0	0.6	1.5	0.5	
37. Methyl acetate(1)- <i>n</i> -hexane(2) [26] 25 14 2.0 6.4 1.2 33.6 40.5 2.6 1.7 9.9 45 13 3.7 1.5 1.0 8.3 6.0 2.7 0.1 6.0 38. Benzene(1)- <i>n</i> -heptane(2) [3,3,3,4] 25 14 2.0 3.4 1.0 1.8 3.4 0.8 1.8 1.3 45 8 3.5 3.4 0.5 1.3 19.7 1.3 4.9 2.3 50 4 - 4.7 1.0 - 2.3 0.8 - 2.3 39. Benzene(1)-cyclohexane(2) [34] 25 12 0.2 0.2 1.1 10.4 6.0 0.5 1.1 1.2 50 12 0.2 0.2 1.6 3.0 1.1 0.5 4.2 1.4 40. 1-Chlorohexane(1)-ethylbenzene(2) ^d [35] 15 17 3.7 3.6 1.1 2.9 6.9 0.8 3.2 6.2 25 19 2.6 4.3 0.6 1.6 2.9 0.4 3.3 1.7 40. 1-Chlorohexane(1)- <i>n</i> -propylbenzene(2) ^d [35] 15 19 3.4 4.5 0.5 0.9 1.7 0.7 2.3 5.4 25 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)-ethylenzene(2) ^d [35] 15 19 3.4 4.5 0.5 0.9 1.7 0.7 2.3 5.4 25 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)-din-butyl ether(2) [31] 15 19 2.3 3.5 1.3 6.5 10.6 5.0 0.2 0.5 43. 1,2-Dichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 5 19 8.1 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.2 6.9 2.1 4.5 4.8 0.9 5.5 3.2 44. 1,1,1-Trichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 10 11 11.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35 11 12.5 4.5 6.9 3.5 4.0 6.3 33.8 0.9 45. <i>n</i> -Heptane(1)-acetic acid(2) [26] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. <i>n</i> -Heptane(1)- <i>n</i> -mytylenzene(2) <i>a</i> 15 19 8.1 3 5.0 1.1 25.3 3.0 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 47. <i>n</i> -Heptane(1)- <i>n</i> -mytylenzene(2) [26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 47. <i>n</i> -Heptane(1)- <i>n</i> -mytylenzene(2) [27] 15 19 1.4 0.0 5.0 9.2 8.13 3.5 0.4 48. <i>n</i> -Heptane(1)- <i>n</i> -mytylenzene(2) [28] 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.4 4.1 50 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 49. <i>n</i> -Heptane(1)- <i>m</i> -wytene(2) [34] 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.4 4.1 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.4 4.1 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.4 4.1 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.4 4.1 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.4 4.1 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.4 4.1 25 8 0.1 0.1 10 2.0 0.9	45	9	5.2	5.0	0.8	13.0	8.2	1.1	0.1	3.1	
25 14 2.0 6.4 1.2 33.6 40.5 2.6 1.7 9.9 45 13 3.7 1.5 1.0 8.3 6.0 2.7 0.1 6.0 38. Benzene(1)- <i>n</i> -heptane(2)[32,33,34] 25 14 2.0 3.4 1.0 1.8 3.4 0.8 1.8 1.3 45 8 3.5 3.4 0.5 1.3 19.7 1.3 4.9 2.3 50 4 - 4.7 1.0 - 2.3 0.8 - 2.3 39. Benzene(1)-cyclohexane(2)[34] 25 12 0.2 0.2 1.1 10.4 6.0 0.5 1.1 1.2 50 12 0.2 0.2 1.6 3.0 1.1 0.5 4.2 1.4 0.1-Chlorohexane(2)-ethylbenzene(2) ⁴ [35] 15 17 3.7 3.6 1.1 2.9 6.9 0.8 3.2 6.2 25 19 2.6 4.3 0.6 1.6 2.9 0.4 3.3 1.7 41. 1-Chlorohexane(1)- <i>n</i> -propylbenzene(2) ⁴ [35] 15 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)- <i>ethylbenzene(2)⁴</i> [35] 15 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)- <i>ethy-bull ether</i> (2)[31] 5 19 8.1 3.5 1.3 6.5 10.6 5.0 0.2 0.5 43. 1,2-Dichloroethane(1)- <i>di-n</i> -butyl ether(2)[31] 5 19 8.2 6.9 2.1 4.5 4.8 0.5 5.3 2.2 44. 1,1,1-Trichloroethane(1)- <i>di-n</i> -butyl ether(2)[31] 10 11 11.1 6.9 2.4 8.1 5.1 13.2 7.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35 11 2.5 4.5 6.9 3.5 4.0 6.3 33.8 0.9 45. <i>n</i> -Heptane(1)- <i>a</i> -eroint) ether(2)[31] 10 11 4.1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 45. <i>n</i> -Heptane(1)- <i>a</i> -eroint) ether(2)[31] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 45. <i>n</i> -Heptane(1)- <i>a</i> -eroint) ether(2)[31] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35 1.4 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. <i>n</i> -Heptane(1)- <i>a</i> -eroint) ether(2)[26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 45. <i>n</i> -Heptane(1)- <i>a</i> -eroint) ether(2)[27] 15 19 1.4 0.0 5.0 9.2 8 1.3 3.5 0.4 48. <i>n</i> -Heptane(1)- <i>a</i> -maylamine(2)[29] 15 19 1.4 0.0 5.0 9.2 8 1.3 3.5 0.4 48. <i>n</i> -Heptane(1)- <i>a</i> -maylamine(2)[29] 15 19 1.4 0.0 5.0 9.2 8 1.3 3.5 0.4 48. <i>n</i> -Heptane(1)- <i>m</i> -maylamine(2)[29] 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.6 4.1 50 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 41.14.5 0.4 1.7 6.5 4	37. Methy	l acetate	e(1)- <i>n</i> -he	(2) (26 xane	5]						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	14	2.0	6.4	1.2	33.6	40.5	2.6	1.7	9.9	
38. Benzene(1)- <i>n</i> -heptane(2) [32,33,34] 25 14 2.0 3.4 1.0 1.8 3.4 0.8 1.8 1.3 45 8 3.5 3.4 0.5 1.3 19.7 1.3 4.9 2.3 50 4 - 4.7 1.0 - 2.3 0.8 - 2.3 39. Benzene(1)-cyclohexane(2) [34] 25 12 0.2 0.2 1.1 10.4 6.0 0.5 1.1 1.2 50 12 0.2 0.2 1.6 3.0 1.1 0.5 4.2 1.4 40. 1-Chlorohexane(1)-ethylbenzene(2) ^d [35] 15 17 3.7 3.6 1.1 2.9 6.9 0.8 3.2 6.2 25 19 2.6 4.3 0.6 1.6 2.9 0.4 3.3 1.7 41. 1-Chlorohexane(1)- <i>n</i> -propylbenzene(2) ^d [35] 15 19 3.4 4.5 0.5 0.9 1.7 0.7 2.3 5.4 25 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)-toluene(2) ^d [35] 15 19 2.3 3.5 1.6 5.8 9.5 4.8 16.2 5.4 25 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)-toluene(2) ^d [35] 15 19 2.3 3.5 1.3 6.5 10.6 5.0 0.2 0.5 43. 1,2-Dichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 5 19 8.1 3.5 1.3 6.5 10.6 3.0 2.0 0.5 44. 1,1,1-Trichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 10 11 11.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35 11 12.5 4.5 6.9 3.5 4.8 0.6 3.3 3.8 0.9 44. 1,1 - Trichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 10 11 11.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35 13 4 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 45. <i>n</i> -Heptane(1)-acetic acid(2) [26] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. <i>n</i> -Heptane(1)-ar-mylamine(2) [29] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 47. <i>n</i> -Heptane(1)- <i>n</i> -mylamine(2) [29] 25 14 1.0 0.5 0.9 2.8 1.3 3.5 0.4 48. <i>n</i> -Heptane(1)- <i>n</i> -mylamine(2) [29] 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.6 4.1 50 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 49. <i>n</i> -Heptane(1)- <i>n</i> -mylamine(2) [24] 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.6 4.1 50 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 40. <i>n</i> -Heptane(1)- <i>n</i> -mylamine(2) [34] 25 8 2.8 1.5 0.2 3.0 8.9 0.4 1.6 11.4 50 8 0.6 1.6 1.0 0.7 0.7 2.4 2.4 4.1 50 8 0.6 1.6 1.0 0.7 0.7 2.4 2.4 4.1 50 8 0.6 1.6 1.0 0.7 0.7 2.4 2.4 4.1 50 8 0.6 1.6 1.0 0.7 0.7 2.4 2.4 4.1 50 8 0.6 1.6 1.0 0.7 0.7 0.7 0.7 0.4 2.2 4.1 50 8 0.6 1.6	45	13	3.7	1.5	1.0	8.3	6.0	2.7	0.1	6.0	
25 14 2.0 3.4 1.0 1.8 3.4 0.8 1.8 1.3 45 8 3.5 3.4 0.5 1.3 19.7 1.3 4.9 2.3 50 4 - 4.7 1.0 - 2.3 0.8 - 2.3 39. Benzene(1)-cyclohexane(2) [34] 25 12 0.2 0.2 1.1 10.4 6.0 0.5 1.1 1.2 50 12 0.2 0.2 1.6 3.0 1.1 0.5 4.2 1.4 40. 1-Chlorohexane(1)-ethylbenzene(2) ^d [35] 15 17 3.7 3.6 1.1 2.9 6.9 0.8 3.2 6.2 2.5 19 2.6 4.3 0.6 1.6 2.9 0.4 3.3 1.7 41. 1-Chlorohexane(1)- <i>n</i> -proylbenzene(2) ^d [35] 15 19 3.4 4.5 0.5 0.9 1.7 0.7 2.3 5.4 2.5 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)-toluene(2) ^d [35] 15 19 3.4 3.5 1.6 5.8 9.5 4.8 16.2 5.4 2.5 1.4 2.5 4.2 1.4 4.5 4.8 0.9 5.5 3.2 4.4 12.7 4.2 1-Chlorohexane(1)-toluene(2) ^d [35] 15 19 2.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 4.2 1.4 1.5 1.3 6.5 10.6 5.0 0.2 0.5 4.3 1.2 - 0.5 4.3 1.2 - 0.5 4.3 1.3 5 1.3 6.5 10.6 5.0 0.2 0.5 4.3 1.2 - 0.5 4.3 1.2 - 0.5 4.3 0.5 1.3 6.5 10.6 5.0 0.2 0.5 4.3 1.2 - 0.5 4.3 1.2 - 0.2 1.4 4.5 4.8 0.9 5.5 3.2 4.4 1.1,1-Trichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 5 19 8.1 3.5 1.3 17.0 52.7 1.4 3.4 3.7 2.5 19 8.2 6.9 2.1 4.5 4.8 0.9 5.5 3.2 4.4 1.1,1-Trichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 10 11 11.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 2.5 4.5 6.9 3.5 4.0 6.3 30.9 5.1 3.5 1.3 5.1 12.5 1.2 5.3 12.9 4.5 3.1 6.9 3.5 4.5 .1 3 0.9 24.7 7.6 4.6 2.4 4.9 4.5 <i>n</i> -Heptane(1)-acide cid2) [26] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 3.4 4.5 1.4 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 4.5 <i>n</i> -Heptane(1)-acide cid2) [26] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 3.0 4.5 <i>n</i> -Heptane(1)-acide cid2) [26] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 13.4 3.5 1.5 1.9 1.3 0.1 6.0 3.5 1.5 1.5 1.5 1.5 1.5 1.3 0.1 6.0 3.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	38. Benzei	ne(1)- <i>n</i>	-heptane()	2) [32,33,3	4]						
45 8 3.5 3.4 0.5 1.3 19.7 1.3 4.9 2.3 50 4 - 4.7 1.0 - 2.3 0.8 - 2.3 39. Benzene(1)-cyclohexane(2) [34] - 2.3 0.8 - 2.3 25 12 0.2 0.2 1.1 10.4 6.0 0.5 1.1 1.2 50 12 0.2 0.2 1.6 3.0 1.1 0.5 4.2 1.4 40. 1-Chlorohexane(1)ethylbenzene(2) d [35] - - - - - - 2.3 5.4 25 19 3.6 3.6 1.9 1.0.3 12.0 2.0 12.4 12.7 41. 1-Chlorohexane(1)noluene(2) d [35] - - - - - - 3.5 1.6 5.8 9.5 4.8 16.2 5.4 25 17 3.4 3.5 1.3 17.0 5.7 1.4 3.4 3.7 25 17 3.4 3.5 1.3 <td>25</td> <td>14</td> <td>2.0</td> <td>3.4</td> <td>1.0</td> <td>1.8</td> <td>3.4</td> <td>0.8</td> <td>1.8</td> <td>1.3</td>	25	14	2.0	3.4	1.0	1.8	3.4	0.8	1.8	1.3	
50 4 - 4.7 1.0 - 2.3 0.8 - 2.3 39. Benzene(1)-cyclohexane(2) [34] 25 12 0.2 0.2 1.1 10.4 6.0 0.5 1.1 1.2 50 12 0.2 0.2 1.6 3.0 1.1 0.5 4.2 1.4 40. 1-Chlorohexane(1)-ethylbenzene(2) ^d [35] 15 17 3.7 3.6 1.1 2.9 6.9 0.8 3.2 6.2 25 19 2.6 4.3 0.6 1.6 2.9 0.4 3.3 1.7 41. 1-Chlorohexane(1)- <i>n</i> -propylbenzene(2) ^d [35] 15 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)-di- <i>n</i> -buyl ether(2) [31] 5 13 6.5 10.6 5.0 0.2 0.5 33. 1,2-Dichloroethane(1)-di- <i>n</i> -buyl ether(2) [31] 5 13 17.0 52.7 1.4 3.4 3.7 25 19 8.1 3.5 1.3 17.0 52.7 1.4 3.4	45	8	3.5	3.4	0.5	1.3	19.7	1.3	4.9	2.3	
39. Benzene(1)-cyclohexane(2) [34] 25 12 0.2 0.2 1.1 10.4 6.0 0.5 1.1 1.2 50 12 0.2 0.2 1.6 3.0 1.1 0.5 4.2 1.4 40. 1-Chlorohexane(1)-ethylbenzene(2) ^d [35] 15 17 3.7 3.6 1.1 2.9 6.9 0.8 3.2 6.2 25 19 2.6 4.3 0.6 1.6 2.9 0.4 3.3 1.7 41. 1-Chlorohexane(1)- <i>n</i> -propylbenzene(2) ^d [35] 15 19 3.4 4.5 0.5 0.9 1.7 0.7 2.3 5.4 25 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)-toluene(2) ^d [35] 15 19 2.3 3.5 1.6 5.8 9.5 4.8 16.2 5.4 25 17 3.4 3.5 1.3 6.5 10.6 5.0 0.2 0.5 31.12-Dichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 5 19 8.1 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.2 6.9 2.1 4.5 4.8 0.9 5.5 3.2 44. 1,1,1-Trichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 10 11 11.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35 11 12.5 4.5 6.9 3.5 4.0 6.3 33.8 0.9 45. <i>n</i> -Heptane(1)-acetic acid(2) [26] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 45. <i>n</i> -Heptane(1)-propionic acid(2) [26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 45. <i>n</i> -Heptane(1)-propionic acid(2) [26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 47. <i>n</i> -Heptane(1)-propionic acid(2) [26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 48. <i>n</i> -Heptane(1)-butuene(2) [34] 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.6 4.1 50 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 49. <i>n</i> -Heptane(1)-toluene(2) [34] 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.6 4.1 50 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 41.17 4.5 41.17 4.5 41.17 4.5 41.10 4.7 4.5 41.17 4.5 41.15 4.5 41.17 4.5 41.15 4.5 41.17 4.5 41.15 4.5 41.15 4.5 41.15 4.5 41.15 4.5 41.15 4.5 41.15 4.5 41.15 4.5	50	4	-	4.7	1.0	_	2.3	0.8	-	2.3	
25 12 0.2 0.2 1.1 10.4 6.0 0.5 1.1 1.2 50 12 0.2 0.2 1.6 3.0 1.1 0.5 4.2 1.4 40. 1-Chlorohexane(1)-ethylbenzene(2) ^d [35] 15 17 3.7 3.6 1.1 2.9 6.9 0.8 3.2 6.2 25 19 2.6 4.3 0.6 1.6 2.9 0.4 3.3 1.7 41. 1-Chlorohexane(1)- <i>n</i> -propylbenzene(2) ^d [35] 15 19 3.4 4.5 0.5 0.9 1.7 0.7 2.3 5.4 25 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)-toluene(2) ^d [35] 15 19 2.3 3.5 1.6 5.8 9.5 4.8 16.2 5.4 25 17 3.4 3.5 1.3 6.5 10.6 5.0 0.2 0.5 43. 1,2-Dichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 5 19 8.1 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.2 6.9 2.1 4.5 4.8 0.9 5.5 3.2 44. 1,1,1-Trichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 10 11 11.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35 11 12.5 4.5 6.9 3.5 4.0 6.3 33.8 0.9 45. <i>n</i> -Heptane(1)-acetic acid(2) [26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 46. <i>n</i> -Heptane(1)- <i>n</i> -amylamine(2) [29] 15 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. <i>n</i> -Heptane(1)- <i>n</i> -amylamine(2) [29] 15 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 0.9 0.9 0.9 0.9 0.7 0.4 2.6 4.1 50 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 41 1.7 6.5 41 1.4 1.0 0.5 0.9 0.9 7 0.4 2.2 4.1 41 1.0 0.	39. Benzer	ne(1)-c	vclohexane	(2) [34]				••••			
50 12 0.2 0.2 1.6 3.0 1.1 0.5 4.2 1.4 40. 1-Chlorohexane(1)-ethylbenzene(2) d [35] 15 17 3.7 3.6 1.1 2.9 6.9 0.8 3.2 6.2 25 19 2.6 4.3 0.6 1.6 2.9 0.4 3.3 1.7 41. 1-Chlorohexane(1)-n-propylbenzene(2) d [35] 15 19 3.4 4.5 0.5 0.9 1.7 0.7 2.3 5.4 25 19 3.6 3.6 1.9 10.3 12.0 2.0 12.4 12.7 42. 1-Chlorohexane(1)-toluene(2) d [35] 5 4.8 16.2 5.4 5 1.3 6.5 10.6 5.0 0.2 0.5 3.1 15 19 2.3 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.1 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.2 6.9 2.1 4.5 4.8 0.9	25	12	0.2	0.2	1.1	10.4	6.0	0.5	1.1	1.2	
40. 1-Chlorohexane(1)-ethylbenzene(2) $d^{-}[35]$ 10. 10.	50	12	0.2	0.2	1.6	3.0	1.1	0.5	4.2	1.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40. 1-Chlo	rohexar	ne(1)_ethv	lbenzene(2) ^d [35]			012			
10 11 <t< td=""><td>15</td><td>17</td><td>3.7</td><td>3.6</td><td>1.1</td><td>2.9</td><td>6.9</td><td>0.8</td><td>3.2</td><td>6.2</td></t<>	15	17	3.7	3.6	1.1	2.9	6.9	0.8	3.2	6.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	19	2.6	43	0.6	16	29	04	33	17	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41 1-Chlo	rohexar	1e(1) - n - n1	onvlhenze	ene(2) ^d [35]	2.7	0.4	0.0	1.7	
15 17 3.4 1.5 0.5 1.7 0.1 1.5 0.1 1.7 1.7 <th1.7< th=""> <th1.7< th=""> <th1.7< <="" td=""><td>15</td><td>19</td><td>34</td><td>4 5</td><td>05</td><td>0.0</td><td>17</td><td>07</td><td>23</td><td>54</td></th1.7<></th1.7<></th1.7<>	15	19	34	4 5	05	0.0	17	07	23	54	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	19	3.6	3.6	19	10.3	12.0	2.0	12.0	12.7	
15 19 2.3 3.5 1.6 5.8 9.5 4.8 16.2 5.4 15 19 2.3 3.5 1.6 5.8 9.5 4.8 16.2 5.4 25 17 3.4 3.5 1.3 6.5 10.6 5.0 0.2 0.5 43. 1,2-Dichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 5 19 8.1 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.2 6.9 2.1 4.5 4.8 0.9 5.5 3.2 44. 1,1,1-Trichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 7.1 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35 11 12.5 4.5 6.9 3.5 4.0 6.3 33.8 0.9 45. <i>n</i> -Heptane(1)-acetic acid(2) [26] 25 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. <i>n</i> -Heptane(1)-propionic acid(2) [26] 25 14 2.	42 1-Chlo	rohexar	ne(1)_tolu	ene(2) ^d [3	5	10.0	12.0	2.0	12.7	12.,	
15 16 16 16 16 16.2 5.4 25 17 3.4 3.5 1.3 6.5 10.6 5.0 0.2 0.5 43. 1,2-Dichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 5 19 8.1 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.2 6.9 2.1 4.5 4.8 0.9 5.5 3.2 44. 1,1,1-Trichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 10 11 11.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35 11 12.5 4.5 6.9 3.5 4.0 6.3 33.8 0.9 45. n-Heptane(1)-acetic acid(2) [26] 26 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 <	15	19	23	35	16	5.8	95	48	16.2	54	
25 17 2.6 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.2 6.9 2.1 4.5 4.8 0.9 5.5 3.2 44. 1,1,1-Trichloroethane(1)-di-n-butyl ether(2) [31] 10 11 11.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35 11 12.5 4.5 6.9 3.5 4.0 6.3 33.8 0.9 45. n-Heptane(1)-acetic acid(2) [26] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. n-Heptane(1)-propionic acid(2) [26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5	25	17	34	35	13	6.5	10.6	5.0	0.2	0.5	
5 19 8.1 3.5 1.3 17.0 52.7 1.4 3.4 3.7 25 19 8.2 6.9 2.1 4.5 4.8 0.9 5.5 3.2 44. 1,1,1-Trichloroethane(1)-di- <i>n</i> -butyl ether(2) [31] 10 11 11.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35 11 12.5 4.5 6.9 3.5 4.0 6.3 33.8 0.9 45. <i>n</i> -Heptane(1)-acetic acid(2) [26] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. <i>n</i> -Heptane(1)-propionic acid(2) [26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 47. <i>n</i> -Heptane(1)- <i>n</i> -amylamine(2) [29] 15 19 1.4 0.0 0.5 0.9 2.8 1.3 3.5 0.4 48. <i>n</i> -Heptane(1)-toluene(2) [34] 25 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 49. <i>n</i> -Heptane(1)- <i>m</i> -xylene(2) [34] 25 8 2.8 1.5 0.2 3.0 8.9 0.4 1.6 11.4 50 8 0.6 1.1 0.2 0.9 0.7 0.4 2.2 4.1	43 1 2-Di	chloroet	thane(1) $-c$	li- <i>n</i> -butyl	ether(2)	31]	10.0	5.0	0.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	19	8 1	35	13	17.0	52 7	14	34	37	
25 15 0.2 0.9 2.1 4.5 4.6 0.9 5.5 5.2 44. 1,1,1-Trichloroethane(1)-di-n-butyl ether(2) [31] 10 11 11.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35 11 12.5 4.5 6.9 3.5 4.0 6.3 33.8 0.9 45. n-Heptane(1)-acetic acid(2) [26] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. n-Heptane(1)-propionic acid(2) [26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 47. n-Heptane(1)-n-namylamine(2) [29] 15 19 1.4 1.0 0.5 0.9 2	25	10	87	60	21	4.5	48	0.0	5.5	3.7	
10 11 11.1 6.9 2.4 8.1 5.1 13.2 27.1 20.0 25 12 12.5 7.5 9.1 14.2 14.0 9.3 30.9 5.1 35 11 12.5 4.5 6.9 3.5 4.0 6.3 33.8 0.9 45. <i>n</i> -Heptane(1)-acetic acid(2) [26] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. <i>n</i> -Heptane(1)-propionic acid(2) [26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 47. <i>n</i> -Heptane(1)- <i>n</i> -amylamine(2) [29] 14 1.0 0.5 0.9 2.8 1.3 3.5 0.4 48. <i>n</i> -Heptane(1)-toluene(2) [34] 25 8 1.3 0.9 0.9 0.4	44 111.T	'richlord	vethane(1)	_di_n_but	z.1 ۱ ether(۲	7.J	4.0	0.7	5.5	5.2	
10 11 111 0.7 2.4 0.1 0.	10	11	11 1	-u:-//-//ui	7 4	81	51	13.2	27.1	20.0	
25 12 12.5 1.5 9.1 14.2 14.0 9.5 50.5 5.1 35 11 12.5 4.5 6.9 3.5 4.0 6.3 33.8 0.9 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. n-Heptane(1)-propionic acid(2) [26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 47. n-Heptane(1)-n-amylamine(2) [29] 15 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 1.0 0.5 0.9 2.8 1.3 3.5 0.4 48 n-Heptane(1)	25	12	12.5	75	01	14.7	14.0	03	300	5 1	
45. n -Heptane(1)-acetic acid(2) [26] 25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. n -Heptane(1)-propionic acid(2) [26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 47. n -Heptane(1)- n -amylamine(2) [29] 15 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 1.0 0.5 0.9 2.8 1.3 3.5 0.4 48. n -Heptane(1)-toluene(2) [34] 25 8 1.6 1.0 0.5 4.5 0.	35	12	12.5	4.5	69	35	4.0	63	33.8	0.0	
25 17 2.6 3.5 1.1 25.3 12.9 4.5 3.1 6.9 35 14 1.7 2.3 0.9 21.7 7.6 4.6 2.4 4.9 46. <i>n</i> -Heptane(1)-propionic acid(2) [26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 47. <i>n</i> -Heptane(1)- <i>n</i> -amylamine(2) [29] 15 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 1.0 0.5 0.9 2.8 1.3 3.5 0.4 48. <i>n</i> -Heptane(1)-toluene(2) [34] 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.6 4.1 50 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 49. <i>n</i> -Heptane(1)- <i>m</i> -xylene(2) [34] 25 8 2.8 1.5 0.2 3.0 8.9 0.4 1.6 11.4 50 8 1.0 1.1 0.2 0.9 0.7 0.4 2.2 4.1	15 n-Hen	tane(1).	-acetic aci	4(2)[26]	0.9	5.5	4.0	0.5	55.0	0.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-45. <i>n</i> -110p	17	-acetic aci	35	11	25.3	12.9	45	31	69	
35 14 1.7 2.5 0.5 21.7 7.6 4.0 2.4 4.5 46. n -Heptane(1)-propionic acid(2) [26] 25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 47. n -Heptane(1)- n -amylamine(2) [29] 15 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 1.0 0.5 0.9 2.8 1.3 3.5 0.4 48. n -Heptane(1)-toluene(2) [34] 25 8 1.3 0.9 0.5 4.5 0.4 1.7 6.5 49. n -Heptane(1)- m -xylene(2) [34] 25 8 2.8 1.5 0.2 3.0 8.9 0.4 1.6 11.4 50 8 2.8 1.5 0.2 3.0 8.9 0.4 1.6 <td>25</td> <td>14</td> <td>17</td> <td>23</td> <td>0.0</td> <td>23.5</td> <td>7.6</td> <td>4.5</td> <td>24</td> <td>10</td>	25	14	17	23	0.0	23.5	7.6	4.5	24	10	
25 14 2.0 4.3 2.0 17.4 6.5 6.1 8.9 13.4 35 15 4.5 5.3 3.0 8.3 11.6 7.0 2.5 3.0 47. n -Heptane(1)- n -amylamine(2) [29] 15 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 1.0 0.5 0.9 2.8 1.3 3.5 0.4 48. n -Heptane(1)-toluene(2) [34] 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.6 4.1 50 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 49. n -Heptane(1)- m -xylene(2) [34] 25 8 2.8 1.5 0.2 3.0 8.9 0.4 1.6 11.4 50 8 2.8 1.5 0.2 3.0 8.9 0.4 1.6 11.4	46 n-Hen	17 tane(1).	-nronionic	2.5	6	21.7	7.0	4.0	2.7	T. 7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40. n-110p	11/	-propionic 2 0	4 3	,0] 20	174	65	61	80	13 4	
35 15 4.5 5.5 5.6 6.5 11.6 7.0 2.5 5.6 47. n -Heptane(1)- n -amylamine(2) [29] 15 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 1.0 0.5 0.9 2.8 1.3 3.5 0.4 48. n -Heptane(1)-toluene(2) [34] 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.6 4.1 50 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 49. n -Heptane(1)- m -xylene(2) [34] 25 8 2.8 1.5 0.2 3.0 8.9 0.4 1.6 11.4 50 8 2.8 1.5 0.2 3.0 8.9 0.4 1.6 11.4 50 8 1.0 1.1 0.2 0.9 0.7 0.4 2.2 4.1	25	14	2.0	53	2.0	23	11.6	7.0	0.5	3.4	
17. m -Reptanc(1)- m -anitylamin(27(29) 15 19 1.4 0.9 0.4 3.1 14.5 1.3 0.1 6.0 35 19 1.4 1.0 0.5 0.9 2.8 1.3 3.5 0.4 48. n -Heptane(1)-toluene(2) [34] 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.6 4.1 50 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 49. n -Heptane(1)- m -xylene(2) [34] 25 8 2.8 1.5 0.2 3.0 8.9 0.4 1.6 11.4 50 8 1.0 1.1 0.2 0.9 0.7 0.4 2.2 4.1	33 17 n-Hen	tone(1).	ч.) n-amulan	oine(2)[20	3.0 N	8.5	11.0	7.0	2.5	3.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47. <i>n</i> -ricp	10	- <i>n-</i> amyian 1 <i>A</i>	0 0	04	3.1	14.5	13	0.1	6.0	
35 1.4 1.6 0.5 0.5 2.6 1.5 5.5 0.4 $48.$ n -Heptane(1)-toluene(2) [34] 25 8 1.3 0.9 0.9 1.1 9.9 0.4 2.6 4.1 50 8 0.6 1.6 1.0 0.5 4.5 0.4 1.7 6.5 $49.$ n -Heptane(1)- m -xylene(2) [34] 25 8 2.8 1.5 0.2 3.0 8.9 0.4 1.6 11.4 50 8 1.0 1.1 0.2 0.9 0.7 0.4 2.2 4.1	35	19	1.4	1.0	0.4	0.1	28	1.5	35	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48 n-Hen	tane(1).	-toluene())[34]	0.2	0.2	2.0	1.5	5.5	U. 7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		sanc(1)- 8	13	ريدي <i>رو</i> 10	ρŊ	41.1	90	04	26	41	
$49. \ m$ -Heptane(1)- m -xylene(2) [34] 25 8 2.8 1.5 0.2 3.0 8.9 0.4 1.6 11.4 50 8 1.0 1.1 0.2 0.9 0.7 0.4 2.2 4.1	50	8 8	0.6	1.6	1.0	05	<u> </u>	0.4	2.0	 65	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 n-Hen	o tanel 1)-	0.0 	(2) [3/]	1.0	0.0	4.5	0.4	1.7	0.0	
50 8 10 11 02 00 07 04 22 41		R R	7 R	15	0.2	3.0	80	0.4	16	11.4	
	50	8	1.0	1.1	0.2	0.9	0.7	0.4	2.2	4.1	

TABLE 1 (continued)

<i>T</i> (°C)	n	Uncertainties (%)		Percen and pe	Percentage average absolute errors $S(h^E)$ and percentage deviations D_i						
		$\overline{\mathbf{U}}_1$	U ₂	NRTL	,		UNIC	QUAC			
				S	D_1	D_2	S	D_1	$\overline{D_2}$		
50. Cycloh	exane(1)-i-octan	e(2) [34]								
25	12	2.8	1.1	0.8	0.1	4.0	1.0	1.7	6.1		
50	8	1.9	1.5	0.7	8.9	2.5	1.2	4.7	1.7		
51. n-Amy	lamine(1)–nonar	ne(2) [29]								
15	19	0.6	2.1	0.2	9.1	10.4	1.3	4.4	15.3		
35	19	0.6	0.7	0.4	3.4	1.0	0.9	1.4	4.0		
52. 2-Metl	nylpropa	noic acid	(1)-water(2) a [25]							
20	14	6.9	0.9	3.7	1.7	4.9	7.8	8.2	20.7		
25	14	5.0	0.9	4.1	1.3	3.4	3.7	6.2	10.5		
30	11	5.0	0.9	3.2	6.4	13.7	6.3	23.3	10.2		
35	11	2.0	0.3	4.5	10.4	3.9	8.4	9.0	1.3		
53. Nitroe	thane(1))–2,2,4-tri	imethylpen	tane(2) ^a [[25]						
20	13	6.8	6.3	11.9	27.8	9.8	4.1	31.3	23.2		
30	13	3.7	3.4	4.9	15.6	7.8	4.8	23.5	24.9		
35	13	3.5	1.3	8.8	2.7	3.9	2.1	10.9	22.3		
40	13	3.8	1.5	9.4	10.9	3.4	2.5	2.9	23.7		
54. n-Buty	lamine(1)-toluer	ne(2) [36]								
15	19	0.6	0.8	0.4	10.7	2.4	0.9	2.1	2.7		
25	19	0.7	0.8	1.7	1.0	1.8	0.7	1.0	2.8		
35	19	0.7	0.8	1.2	3.7	2.9	0.5	0.4	0.7		
55. n-Buty	lamine(1)-methy	lcyclohexa	ne(2) [36]							
15	19	0.7	1.2	0.4	16.0	0.9	0.9	5.3	3.8		
25	19	2.2	1.3	1.1	0.3	0.8	0.9	7.9	0.1		
35	15	0.9	1.4	0.8	4.9	0.6	0.7	0.4	0.7		
56. n-Octa	ne(1)-2	2-methylp	entane(2)	¹ [37]		. .					
10	7	3.4	2.8	4.7	27.6	7.1	6.3	20.1	23.8		
20	8	2.4	1.7	2.7	8.0	0.4	5.4	8.0	0.4		
30	7	3.3	1.8	4.8	14.3	5.9	2.7	13.4	3.9		
40	7	2.9	1.6	3.0	14.0	10.9	3.5	1.3	7.5		
57. <i>n</i> -Octa	ne(1)-3	s-methylp	entane(2)	[37]				.			
10	7	0.7	2.1	1.6	8.3	11.3	6.0	20.5	14.0		
20	8	3.3	1.4	1.5	5.5	4.3	4.2	1.7	11.4		
30	7	2.2	1.1	2.3	15.4	3.3	4.6	16.0	10.1		
40	7	1.4	1.9	3.3	8.3	4.9	5.1	7.3	1.7		

TABLE 1 (continued)

^a Partially miscible systems. ^b P = 5 MPa, where P is the system pressure. ^c System showing S shape for the plot of h^{E} versus x. ^d Nearly ideal systems.

which each alcohol molecule makes a hydrogen bond with a polar molecule and in which such complexes are surrounded by a large amount of the polar liquid medium. Therefore, the difference between the values of ΔH_1 for the alcohol-polar liquid systems and that for the alcohol-non-polar system may correspond roughly to a measure of the alcohol-polar liquid

TABLE 2

Comparison of predicted and experimental values of ΔH_i obtained by direct calorimetric measurement of $h^{\rm E}$ in the highly diluted region of x_i [8] Ref. 0.0008 0.0012 0.0006 0.0027 0.0002 ΔH_i [8] (J-mol⁻¹) 0.005 x_i min. - 2890 16000 3190 4750 21300 23300 23200 4820 5730 4280 5250 exptl T range 5-65 5-65 25-50 25-50 30-60 5-50 18–30 25–50 20-50 20-50 30-60 ິບ ບໍ UNIOUAC - 7176 16943 5135 8602 3038 5255 6284 5184 15045 14598 9703 9965 5138 - 6269 15448 5279 NRTL 3395 4829 10184 3844 ΔH_i [this work] (J-mol⁻¹) 0.049 0.073 0.073 0.025 0.025 0.082 0.201 0.05 min. 0.1 *x*[,] exptl^a 3074 4743 - 7512 14896 T(i) (°C) 25(1) 25(2) 25(1) 25(1) 40(1) 40(1) 60(2) 10(1) 25(2) 25(1) l-Butanol(1)-nitromethane(2) 2-Propanol(1)-cyclohexane(2) Benzene(1)-cyclohexane(2) Ethanol(1)-cyclohexane(2) Methanol(1)-n-heptane(2) Methanol(1)-n-hexane(2) Water(1)-methanol(2) Ethanol(1)-acetone(2) System

^a Experimental values obtained by extrapolation of finite concentration data of $h^{\rm E}$.

18

I

5217

5125

0.006

5060

60(2)

2-Propanol(1)-heptane(2)

353

Fig. 1. Comparison of $h^{\rm E}/x_1x_2$ predictions with the experimental values [34] at finite concentration and infinite dilution for the system *n*-heptane(1)-toluene(2).

intermolecular hydrogen bonding [38]. In a strict treatment, the dipolar stabilization energy must be also included, because alcohol-polar liquid complex molecules are embedded in the polar medium. Using the thermodynamic cycle [39], intermolecular hydrogen bonding energies may be estimated. These agree with the results obtained from a spectroscopic study [38,40,41].

The alcohol solutions have a higher enthalpy of mixing at 25 °C with benzene than with *n*-hexane, which is consistent with the view that more hydrogen bonds are broken in benzene solution than in hexane solution. For a given alcohol, the value of $h^{\rm E}$ at 25 °C decreases as more alkyl groups are substituted on the benzene ring [42].

Table 1 indicates that, for 2128 data points of $h^{\rm E}$, excluding the points of the system 2-propanol-water, the average absolute errors are obtained as 3.3% and 4% for the NRTL and UNIQUAC models respectively. Deviations, D_i , between the predicted and experimental values of ΔH_i obtained by the extrapolation of finite concentration $h^{\rm E}$ data may be assumed as satisfactory. In Table 2, the predicted and experimental values of ΔH_i obtained by direct calorimetric measurements of $h^{\rm E}$ in the highly diluted region of x_i [8] are compared. Figures 1-4 show the values of $h^{\rm E}/x_1x_2$ at finite and at infinite dilution for various types of systems. Tables 1 and 2 and Figs. 1-4 indicate that predictions obtained from the NRTL and UNIQUAC models are mainly satisfactory, except for the region of high dilution.

Fig. 2. Comparison of $h^{\rm E}/x_1x_2$ predictions with the experimental values [18] at finite concentration and infinite dilution for the system ethanol(1)-toluene(2).

As Table 3 and Fig. 5 indicate, the agreement between the predicted and experimental values of C_p^E is mainly poor for both of the models. As Trampe and Eckert [8] state, by measuring derivative excess properties directly, one avoids the inherent loss of precision incurred when differenti-

Fig. 3. Comparison of $h^{\rm E}/x_1x_2$ predictions with the experimental values [26] at finite concentration and infinite dilution for the system *n*-heptane(1)-acetic acid(2).

Fig. 4. Comparison of $h^{\rm E}/x_1x_2$ predictions with the experimental values [15] at finite concentration and infinite dilution for the system methanol(1)-*n*-hexane(2).

ating data. When estimating the values of C_p^E from $(\partial h^E / \partial T)_x$, the accuracy of h^E determination should be high [10]. The temperature dependence of C_p^E for aqueous alcohol mixtures is relatively large and complicated [43]. In Table 4 the predicted values of limiting activity coefficients for some

In Table 4 the predicted values of limiting activity coefficients for some of the systems are compared with the experimental values [47]. Because of the empirical character of the models [2,3], the predicted and experimental values show large deviations.

TABLE 3

Comparison of the experimental and predicted values of excess heat capacities C_n^E

System and refs.	<i>T</i> (°C)	Average a	bsolute error $S(C_p^{\rm E})$
		NRTL	UNIQUAC
Methanol(1)-water(2) [15,10,43]	15	300.8	215.8
	25	115.0	79.5
	35	78.1	67.5
Ethanol(1)-water(2) [20]	150	93.7	671.7
	175	45.3	607.0
Ethanol(1)-toluene(2) [17]	30	26.8	5.5
2-Propanol(1)- <i>n</i> -heptane(2)[17,44]	30	47.6	15.9
• • • • • • • • • •	35	11.6	73.7
	40	17.9	73.6
	45	31.9	73.6
1-Butanol(1)-methanol(2) [26,45]	25	107.4	0.05
Benzene(1)-cyclohexane(2) [33,39]	25	164.3	7.5
Benzene(1) - n-heptane(2) [32, 34, 46]	20	459.5	23.2
· · · · · · · · · · · · ·	25	173.8	23.1
	30	58.3	22.5

Fig. 5. Comparison of C_p^E predictions with the experimental values [18] for the system ethanol(1)-toluene(2).

TABLE 4

Comparison of the experimental [47] and predicted values of limiting activity coefficients γ_1^{∞}

System	T (°C)	γ_i^∞						
		Experimental	Predicted					
			NRTL	UNIQUAC				
Methanol(1)-n-hexane(2)							
	68.05	34.40	305.89	49.97				
Ethanol(1)-	-acetone(2)							
	25	2.44	11.67	2.07				
	35	2.24	10.92	2.01				
	45	2.07	10.23	1.96				
	55	1.92	9.61	1.92				
Ethanol(1)-	-cyclohexane(2)							
	39.65	29.90	81.96	2.09				
	49.75	24.30	72.74	2.04				
	59.85	19.10	64.97	1.99				
	69.85	15.10	58.43	1.95				
	79.75	11.70	52.88	1.91				
Ethanol(1)-	-ethyl acetate(2)							
	55.25	2.55	60.38	5.96				
	65.25	2.44	54.69	5.51				
	75.95	2.34	49.42	5.10				
2-Propanol(1)-cyclohexane(2)						
	39.65	23.40	121.89	27.07				
	49.75	18.34	107.43	24.42				
	59.85	15.72	94.95	22.19				
	69.85	12.74	84.39	20.32				
	79.75	10.45	75.46	18.73				

The measurements at high dilutions and the examination of partial molar functions and activity coefficients rather than simple excess functions, which disguise the extreme non-ideality of the dilute solutions, are very important. Models must also account well for the partial properties [6,8,11,47].

CONCLUSIONS

Using the local composition models of NRTL and UNIQUAC, calorimetric properties have been predicted at different isotherms for a large number of binary liquid mixtures. The adjustable parameters of the models are estimated using $h^{\rm E}$ data alone. The performance of the models is mainly satisfactory for the predictions of heats of mixing and partial molar heats of mixing at infinite dilution, but not so for the predictions of excess heat capacity and limiting activity coefficients.

ACKNOWLEDGEMENTS

The authors extend their thanks to State Planning Organization for providing financial support under project No. 90K120430, and to the Computer Centre of the University of Çukurova for providing the computation facilities.

REFERENCES

- 1 A.K.S. Murthy and D. Zudkevitch, Inst. Chem. Eng. Symp. Ser., (56) (1979) 1.1/52.
- 2 Y. Demirel and H. Gecegormez, Fluid Phase Equilib., 65 (1991) 111.
- 3 Y. Demirel and H. Gecegormez, Can. J. Chem. Eng., 67 (1989) 455.
- 4 H. Renon and J.M. Prausnitz, AIChE J., 14 (1986) 135.
- 5 D.S. Abrams and J.M. Prausnitz, AIChE J., 21 (1975) 116.
- 6 Y. Demirel, Thermochim. Acta, 170 (1990) 197.
- 7 Y. Akamutsu, H. Ogawa and S. Murakami, Thermochim. Acta, 113 (1987) 141.
- 8 D.M. Trampe and C.A. Eckert, J. Chem. Eng. Data, 36 (1991) 112.
- 9 T. Okano, H. Ogawa and S. Murakami, Can. J. Chem., 66 (1988) 713.
- 10 H. Ogawa and S. Murakami, Thermochim. Acta, 109 (1986) 145.
- 11 Y. Demirel, Can. J. Chem. Eng., 68 (1990) 697.
- 12 I. Nagata, T. Ohta and T. Takahashi, J. Chem. Eng. Jpn., 5 (1972) 227.
- 13 I. Nagata, T. Yamada and S. Nakagawa, J. Chem. Eng. Data, 20 (1975) 271.
- 14 I. Nagata, T. Ohta, M. Ogura and S. Yasuda, J. Chem. Eng. Data, 21 (1976) 310.
- 15 C.G. Savini, D.R. Winterhalter and H.C. Van Ness, J. Chem. Eng. Data, 10 (1965) 171.
- 16 A.J. Easteal and L.A. Woolf, J. Chem. Thermodyn., 17 (1985) 69.
- 17 G.L. Nicolaides and C.A. Eckert, J. Chem. Eng. Data, 23 (1978) 152.
- 18 H.C. Van Ness, C.A. Soczek, G.L. Peloquin and R.L. Machado, J. Chem. Eng. Data, 12 (1967) 217.
- 19 S.J. O'Shea and R.H. Stokes, J. Chem. Thermodyn., 18 (1986) 691.
- 20 G. Scatchard and F.G. Satkiewicz, J. Am. Chem. Soc., 86 (1964) 130.

- 21 J.B. Ott, C.E. Stouffer, G.V. Cornett, B.F. Woodfield, C. Guanquan and J.J. Christensen, J. Chem. Thermodyn., 19 (1987) 337.
- 22 J.R. Battler, W.H. Clark and R.L. Rowley, J. Chem. Eng. Data, 30 (1985) 254.
- 23 C.G. Savini, D.R. Winterhalter and H.C. Van Ness, J. Chem. Eng. Data, 10 (1965) 168.
- 24 T.H. Nguyen and G.A. Ratcliff, J. Chem. Eng. Data, 20 (1975) 252.
- 25 J.R. Battler and P.L. Rowley, J. Chem. Eng. Data, 35 (1990) 334.
- 26 I. Nagata, M. Nagashima, K. Kazuma and M. Nakagawa, J. Chem. Eng. Jpn., 8 (1975) 261.
- 27 R.H. Stokes, J. Chem. Thermodyn., 20 (1988) 1349.
- 28 T.H. Nguyen and G.A. Ratcliff, J. Chem. Eng. Data, 20 (1975) 256.
- 29 J.F. Chamblain and J.H. Vera, Can. J. Chem. Eng., 66 (1988) 458.
- 30 I. Nagata, T. Ohta, T. Takahashi and K. Gotoh, J. Chem. Eng. Jpn., 6 (1973) 129.
- 31 H.I. Paul, J. Krug, B. Gutsche and H. Knapp, J. Chem. Eng. Data. 31 (1986) 448.
- 32 D.A. Palmer and B.D. Smith, J. Chem. Eng. Data, 17 (1972) 71.
- 33 T.M. Letcher and J.W. Bayles, J. Chem. Eng. Data, 16 (1971) 266.
- 34 G.W. Lundberg, J. Chem. Eng. Data, 9 (1964) 193.
- 35 H.I. Paul, J. Krug and H. Knapp, J. Chem. Eng. Data, 33 (1988) 453.
- 36 Y. Zutao and J.H. Vera, J. Chem. Eng. Data, 33 (1988) 12.
- 37 W. Ameling, M.A. Siddiqi and K. Lucas, J. Chem. Eng. Data, 28 (1983) 184.
- 38 S. Murakami and R. Fujishiro, Bull. Chem. Soc. Jpn., 39 (1966) 720.
- 39 H. Ogawa and S. Murakami, Thermochim. Acta, 88 (1985) 255.
- 40 S. Murakami, K. Amaya and R. Fujishiro, Bull. Chem. Soc. Jpn., 37 (1964) 176.
- 41 S. Murakami, R. Fujishiro, Bull. Chem. Soc. Jpn., 40 (1967) 1784.
- 42 K-Y. Hen and H.L. Clever, J. Chem. Eng. Data, 20 (1975) 268.
- 43 G.C. Benson and P.J. D'Arcy, J. Chem. Eng. Data, 27 (1982) 439.
- 44 G.N. Brown, Jr., and W.T. Ziegler, J. Chem. Eng. Data, 24 (1979) 319.
- 45 H. Ogawa and S. Murakami, J. Solution Chem, 16 (1987) 315.
- 46 R. Tanaka, J. Chem. Eng. Data, 32 (1987) 176.
- 47 D.M. Trampe and C.A. Eckert, J. Chem. Eng. Data, 35 (1990) 156.