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Abstract 

A method based on the Wiener approach has been presented for filtering calorimetric 
signals with the technique of windowing the power spectrum in the frequency domain 
instead of an abrupt rectangular cut-off of the noise frequencies. 

This paper presents a time-domain approach which, for the ideal case of additive 
noise-corrupted signals with the noise normal, does not require any user input except for 
considerations of implementation such as filter length. The key point lies in the norming of 
the final filter coefficients vector for various targets; here the steady state unity gain is 
selected. 

SYMBOLS 

f*g f convolved with g 
HfWl Fourier transform of f(t) 
0-‘[ f(t)] inverse Fourier transform of f(t) 
R,,(T) autocorrelation function of x( t ) 
P-’ matrix P inverse 

INTRODUCTION 

Rey [l] has developed the following optimal filter for use with calorimet- 
ric signals. 

Consider a measured signal z(k) constituted as a signal x(k) corrupted 
by additive noise n(k) 

z(k)=@)+@) (1) 
The problem is to determine a filter f(k) giving i(k), the best approxima- 
tion of x(k) in the least-squares sense 

/m 12(t) -x(t))’ dt = /m I ii?(w) -X(w) I * dw 
, -cc , --m 

(2) 
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Using the Fourier transforms and 

X(w) =F(w)X(w) 

Rey’s frequency domain solution is 

(3) 

I X(w) I 2 
F(w)= lX(w)12+IN(w)12 

With a cut-off frequency wC, the optimal rectangular filter is 

F(w) = 
1 wrw, 

0 w>w, 

(4 

(5) 

To smooth the resulting parasitic ripples when using the above filter, a 
window function W(w), (the traditional Welch, Parzen and Hanning win- 
dows are studied) is applied to F(w) to construct the more acceptable filter 
G(w) where 

G(w) =F(w) x W(w) (6) 

Note that, normally, windowing is performed in the time domain 

g(k) =f(k) xw(k) (7) 

where w(k) is the window function, and hence the Fourier transform of 
eqn. (7) is 

G(w) =F(w)* R(w) (8) 

with 

8Mk)l = a(w) 

This would have been the form of eqn. (6). 

TIME-DOMAIN APPROACH 

A time-domain derivation of the filter (eqn. (4)) is given in the Appendix 
and is 

where 

A&) = Irn f(~ - u) du 
--m 

or 

(10) 

(11) 
1 

AF(T) = 1 + ISNR( T) 
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where the function ISNR (which may be seen as an inverse signal-to-noise 
ratio) is 

Rc?z(~) 
ISNR(T) = - 

L(T) 
(12) 

for a finite impulse 

M 

response (FIR) filter of length 2M + 1 (two-sided) 

0 M-7+1 

or 

-UT) = 5.k + MT5k (14) 
0 1 

Solving for the filter coefficients in eqn. (11) and using eqn. (14) leads to 
the solution of the simultaneous equation 

PF=N (15) 

where the filter coefficients vector 

N= [no n, n2 . . . n~_l]~ 

noise 

-2 
1 

” :‘- 
-1 . . . . . . . . .._..... --. . . . . . .._.......... KY . . . . . .._...... !. . . . . . .._._ p!.i...: .._._...... :..i...: . . . . . . . . . . . Li . . . . . . . . . . . . . . . . . . i..!!..Y . . . . . . . . . . 

Fig. 1. Reconstruction of sine wave corrupted by white noise of variance 0.16. 
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1 

” = 1 + ISNR( j) 
j=O, . . . . M-l 

and P is a square of dimension A4 and takes the form 

/l 2 2 . . . 2\ 

P= I 1 2 2 . . . 2 

i. 

. 

i. 

. 

i. 

. 

: *... 

. 

.1 

1 1 1 . . . 1 I 

The inverse of P is easy to evaluate: 

(-1 0 0 . . * 0 2 
. . . 1 -1 . . . . . . . . . ..a 

0 . . . 0 
0 . . . 0 

p-’ = I . A?. . . P. . . .o. . 
0 1 -1 
1 -1 0 

and can be used directly to give 

F=P-'XN 

(16) 

(17) 
Convolve the filter with a window function wk to give new filter coefficients 

f/i 

f,=ff*% (18) 

1 
signal 

noise 
n(t) 

Fig. 2. Reconstruction of pulse wave corrupted by white noise of variance 0.16. 
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I 

signal _ 

x(t) 
.5 _.................. i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i . . . . . . . . . . . . . . . . . . . . . . . . . . .._......_. i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _i . . . . . . . . . . . . .._... 

0 ,‘,‘I’,‘, ‘.‘.I’,,’ ,.“I.“’ ,.,.I,.,’ 
2 

noise 

Fig. 3. Reconstruction of pulse wave corrupted by white noise of variance 0.64. 

The applied FIR filter F, is then F’ of eqn. (18) normed depending on the 
final objective 

F’ 

Fa= IIFII (19) 

Fig. 4. Reconstruction of pulse wave corrupted by white noise of variance 0.16 (filter 
calculation: assumes impulse noise autocorrelation). 
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TABLE 1 

Filter simulation parameters 

Figure Signal 

1 Sine 
2 Pulse 
3 Pulse 
4 Pulse 

White noise Filter 
variance length 

0.16 9 
0.16 9 
0.64 9 
0.16 9 

Filter calculation 

Autocorrelation algorithm 
Autocorrelation algorithm 
Autocorrelation algorithm 
Impulse autocorrelation 

RESULTS 

Tests were performed on various signal types; here, only the sine (Fig. 1) 
and pulse signals (Figs. 2-4) are presented. The figures show (1) the pure 
signal, (2) the noise (normal, mean zero), (3) the corrupted measurement, 
and (4) the reconstruction of the pure signal, i.e. the filtered signal. 

The simulation conditions are summarised in Table 1. 
The filters in Figs. l-3 were evaluated by algorithmically evaluating the 

autocorrelation function of the signal and the noise respectively. For the 
filter in Fig. 4, the noise autocorrelation was assumed ideal, i.e. impulse, 
only the zero-shift element of the signal autocorrelation, the r.m.s. value 
(squared), had to be determined. Unity was selected. 

The filter length was determined from the autocorrelation algorithm 
which gives significant autocorrelation function values only. 

Figure 1 shows the effect of the filter on a sine of unit amplitude which 
is measured with white noise of variance 0.16. The corrupted signal still has 
a sinusoidal form and the filter restores the amplitude. 

The remaining figures illustrate the effect of the filter on pulses with two 
different noise levels (Figs. 2 and 3) and the use of an ideal noise 
correlation function with a user input for the signal variance. 

CONCLUSION 

A simple but effective filter has been presented that requires minimal 
user tuning. The filter can perform adequately without any user parameter 
input. Optimal performance is achieved for white-noise corrupted signals. 
The greatest degradation of performance occurs with signals with high 
amplitude sinusoidal components. 
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Consider the integrand in eqn. (2) as 

I== (f(t) -x(1))2 (Al) 

Differentiating with respect to f(t) for all t (for clarity, the argument is 
dropped where convenient) 

W) dI df 
- = - - = 2[x^(t) -x(t)]; 
df(t) dx^ df 

(Jw 

w 

W) 

fW 

W) 

W) 

W) 

tw 

Gw 

But 

W) = /IJ( t - a)z(u) du 

and 

$ = I@ z(u) du 
--m 

Using eqn. (A4) in (A2) 

or 

Now, the measurement noise is 

Z(U) =x(u) + R(U) 

Substituting for zfu) in iA6) gives 

Introducing the variable 

s=t-u 

the second term in eqn. (A8) may be written as 

$ = fm x(t)+ -s) ds + j-W x~t)~(t -3) ds =R,,(t) 
--m --cQ 

for x(t) and n(t) uncorrelated. 
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Now consider the products of the first term of eqn. (A8). The first 
product is 

jrn Irn f(t - ~)~(+Q> du dp 
-cc --m (All) 

Introducing another dummy variable 

p=t-u 

then eqn. (All) may be written as 

1X f(p) dpl= x(+(t - 4 du 
--m --m 

= w,/” f(P) dP = LwFw 
-cc 

where 

4(t) = Irn f(p) dp 
--m 

Similarly, the second product is 

Irn /m f(t - +(+(P) du dp 
--m --m 

= /y:(p) dpjm n(u)x(t -u) du = 0 
-cc 

The third product is 

/_“,/” f(t -+(+(P) du dp = 0 
--m 

for reasons as above. 
Finally 

lrn Irn f(t - +0)4 P) du dp = K&)4(t) 
--m -cc 

Thus for a minimum 

d W) -= 
df(t) O 

and 

&&)4W + R&M&) -K,(t) 

=Mt)[L(t) + R&)1 - Ut) = 0 

from which 

A&) = 
Kst) 

R,,(t) + Km(t) 

(Al21 

(W 

(Al41 

( fw 

6416) 

(Al? 

W8) 

w9 

WO) 


