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Theoretical analysis of two systems of power-compensated DSC is presented; one is a 
system with proportional temperature control of the sample holder and the other is with 
PID (proportional, integral and differential) temperature control of the sample holder. 

Power-compensated DSC is designed to measure directly and exactly the enthalpy 
change of the sample holder as a function of time. However, the measured output signal in 
both systems is not exactly equal to the enthalpy change of the sample holder. When there 
is an input signal, the enthalpy change of the sample holder is a step function of time, and 
the output signals in both systems are examined. The output signal in the system with 
proportional temperature control of the sample holder gradually approaches the input 
signal as time increases but does not converge uniformly to the input signal. The output 
signal in the system with PID temperature control of the sample holder shows time delay 
and an overshoot or damped vibration depending on the values of control parameters. 

A proportionality relation between total enthalpy change of the sample holder and 
peak area of the output signal is valid in both systems. 

INTRODUCI’ION 

Two types of differential scanning calorimeter (DSC) are widely used in 
studying thermal properties of materials: heat-flux DSC and power- 
compensated DSC [l]. Heat-flux DSC measures the temperature 
difference T, - T,, where T, is the temperature of the outside surface of the 
sample holder and T, is that of the reference holder. A schematic 
representation of heat-flux DSC is shown in Fig. 1. Power-compensated 
DSC measures the differential electric power pS - pr required to keep both 
sample and reference holders at the same temperature throughout the 
entire analysis, where pS is the electric power fed to the sample holder and 
pr is that fed to the reference holder. Figure 2 shows a schematic 
representation of a power-compensated DSC system. The difference 
between the operational principles of the two types of DSC is easily seen 
in Figs. 1 and 2. 

Watson et al. described the system of power-compensated DSC [2] and 
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Fig. 1. Schematic diagram of heat-flux DSC system: s, sample holder; r, reference holder; 
C, programmed temperature controller; B, surrounding block; D, display; T,, temperature 
of the sample holder; T,, temperature of the reference holder. 
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Fig. 2. Schematic diagram of power-compensated DSC system: s, r, T,, T, and D are the 
same as in Fig. 1; p., electric power fed to the sample holder; p,, electric power fed to the 
reference holder; T,, programmed average temperature of the sample holder and the 
reference holder; AC, programmed average temperature controller; DC, difference 
temperature controller; TS, thermal shield. 
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O’Neill treated theoretically the system with proportional temperature 
control of the sample holder surface [3]. After O’Neill’s theoretical 
treatment, no author has elucidated the behavior of the control system, 
while some authors presented generalized theories of both types of DSC 
without providing any insights into the control system [4-61. Here, we 
treat the control system of power-compensated DSC described by Watson 
et al. [2] and O’Neill [3] and investigate the response behavior of the 
output signal in DSC when a thermal change occurs in the sample holder. 

PROPORTIONAL TEMPERATURE CONTROL OF SAMPLE HOLDER 

We now consider a system of sample holder with power compensation 
control under constant environment temperature TE similar to the one 
investigated by O’Neill 
3. 

For an infinitesimal 
thermodynamics to the 

dH dQ dW 

-=dt+dt dt 

[3]; a block diagram of the system is shown in Fig. 

time interval dt, application of the first law of 
sample holder gives 

(1) 

where H is the enthalpy of the sample holder, Q is the heat transferred to 
the sample holder and W is the electrical work done on the sample holder. 
In our discussion, “sample holder” refers to the sample and the holder 
taken together. 

The enthalpy of the sample holder H is determined by two thermo- 
dynamic variables, namely the extent of reaction g and the temperature T. 
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Fig. 3. Block diagram of power-compensated sample holder system: S, sample holder; C, 
temperature controller; D, display; E, environment; T, temperature of the sample holder; 
Tp, programmed temperature; TE, temperature of the environment; h, heat transfer 
coefficient; P(t), electric power fed to the sample holder. 
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Then, we have H = H(& T) and 

dH aHdE aHdT _--+-- 
dt-aEdt aTdt 

= v(t) + cg 
where 

6’HdE 
v(t) =-- 

ag dt 

(2) 

(3) 

is the rate of enthalpy change caused by chemical reaction or physical 
phase change of the sample, and 

c = aHfaT (4) 

is the heat capacity of the sample holder. dQ/dt is the rate of heat flow to 
the sample holder and is given by 

dQ/dt = h(T, - T) (5) 

where h is the heat transfer coefficient and TE is the temperature of the 
environment. dW/dt is the electric power P(t) which compensates the, 
thermal change of the sample holder and is assumed to be 

dW/dt = P(t) = K(T, - T) Tp> T (6) 
= 0 T,<T (7) 

where K is constant and Tp is the programmed temperature. Because the 
electric power is always positive, P(t) should be set to be zero for Tp < T. 
Thus, when the temperature of the sample holder T is lower than the 
programmed temperature Tp, T approaches Tp by losing energy to the 
environment with heat flow rate of h(T, - T). From eqns (l)-(S), we 
have 

v(t) + Cg= h(T, - T) $ P(t) 

We investigate here the system in the case where the programmed 
temperature Tp changes linearly with time t at a rate cy 

Tp=Tpo+cxt (9) 

and 

Tp > T > TE = constant (10) 

When, no chemical and physical change of the sample occurs, we 
assume that the system is in a steady state and the temperature of the 
sample holder changes linearly with time at the same rate a as the 
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programmed temperature. In the steady state, eqns (6) and (8) become 

K(t) = K(T, - T,) (11) 

Cd$h(T,- T,,)+P,,(t) (12) 

where the subscript ss denotes the quantity in the steady state. Subtracting 
eqn. (12) from eqn. (8), and eqn. (11) from eqn. (6), we have 

v(t) + cg= -he +p(t) (13) 

and 

p(t) = -K8 

where 

t?=T-T, 

P(t) = w> - Pssw 

(14) 

(15) 

(16) 

Eliminating 13 from (13) and (14), we get 

40 = Kdt 
C W) + th + K) 

K PW (17) 

When p(t) is recorded as a function of time, the recorded curve deviates 
from zero line position to form a peak or a step due to the enthalpy 
change of the sample v(t). Hereafter, v(t) refers to the input signal of the 
DSC system and p(t) to the output signal of the system. 

The objective of power-compensated DSC is to measure directly the 
enthalpy change of the sample as a function of time. It is desired that the 
output signal p(t) of the DSC follows the input signal v(t) as precisely as 
possible. Then, it is necessary to compare input signal v(t) and output 
signal p(t) as a function of time. In the problem of analysis of a measuring 
system, a test input signal is applied to the system, and the performance of 
the system is evaluated by studying the output response of the system as a 
function of time. The step function 

v(t) = ?J(j t>O 

=o t<O 
(18) 

where uO is a constant, is useful as a test signal since the response to such 
an initial instantaneous jump reveals a great deal about the rate at which a 
system responds. 

Starting at the initial condition 

p(t) = 0 t<O (19) 

and solving eqn. (16) when v(t) is given by eqn. (18), we get the step 
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Fig. 4. Illustrative behavior of output response signal 
response approaches the input signal as K increases but 
input signal. 

response of the system pJt) 

p&t) = f!$ (1 - e+) 

(20) to step input signal (18). The 
does not converge uniformly to the 

(20) 

where 

r=C/(K+h) (21) 

Figure 4 illustrates the behavior of response (20) to step input signal 
(18). The response cannot follow a sudden change in the input instan- 
taneously; it shows transient behavior and approaches the steady state as 
the time becomes very large. 

fLm M) = P&9 

= KV,/(K + h) (22) 

The output response approaches the level of the input signal as K 
increases but it does not converge uniformly to the input signal. 

PID CONTROL OF TEMPERATURE OF SAMPLE HOLDER 

No authors describe any method of temperature control other than 
proportional temperature control in DSC. PID temperature control is 
widely used in practise, where PID stands for proportional integral 
derivative. It is thus necessary to examine PID control in DSC. 

Instead of proportional temperature control given by eqns (6) and (7), 
the following PID control is assumed 

p(t) = KP(Tp - T) + K, I ’ (T, - T) dt + K, 
WP - T) 

dt 

Tp> T (23) 
0 

= 0 

where Kp, K, and K, are constant. 

Tp< T (24) 
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Condition (10) is also assumed here. 
When v(t) = 0, a steady state given by eqn. (12) and 

73 

P&(t) = KP(Tp - Es) + 

is assumed. Then we 

p(t) = P(t) - P,,(t) 
I-’ 

K, ot (Tp - T,) dt + KD d”“dT “) 
I 

have 

=-Kpt3-K, edt-KDz 
J 

de 

0 

where 8 is given by eqn. (15). Equation (13) is also valid here for PID 
control. 

It is necessary to obtain a relation between input signal v(t) and output 
recording signal p(t) by eliminating 8 from eqns (13) and (26). To 
eliminate variable 8 from the differential integral equations, it is useful to 
apply the Laplace transform method [7]. Applying the Laplace transform 
to eqns (13) and (26) with zero initial conditions (i.e. the related functions 
v(t), p(t) and their derivatives v’(t), p’(t) are all zero at t = 0) 

6(s) + Cs@) = -hqs) +p(s) (27) 
p(s) = -K@(s) - K,6(s)/s - K,&(s) (28) 

where s is a parameter in the Laplace transform, and g(s), ii(s) and p(s) 
are the Laplace transforms of v(t), e(t) andp(t) respectively. Eliminating 
f?(s) from eqns. (27) and (28), we get 

KDs2 + K,s + K, 
‘@) = (KD + C)s” + (K, + h)s + K, ‘(‘) 

For step function input (18), g(s) = uo/s, eqn. (29) becomes 

KDs2 + K,s + K, 
“‘(‘) = (K, + C)s” + (K, + h)s + K, : 

(29) 

(30) 

where psr(s) is the Laplace transform of step response psr(t). 
The values of p&O) and psr(m) can be obtained easily from eqn. (30) by 

applying the initial-value theorem and the final-value theorem [8] 

p,,(O) = lim s&(s) = j& v. 
S-m D 

(31) 

psrw = ym = vo (32) 

Equation (32) shows that the limiting value of psr(t) as time goes to 
infinity is identical with the input signal vo. 

To obtain detailed information on how output signal psr(t) varies with 
time, it is necessary to carry out the inverse Laplace transform of eqn. 
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t 
Fig. 5. Three typical curves of step response ps,(t) of which the Laplace transform is given 
by eqn. (30). When the two roots of characteristic eqn. (33) are imaginary, ps,(t) shows 
damped vibration (curve A). When the two roots are real, it shows gradual approach to 
input signal (18) with or without an overshoot as t increases (curves B and C). 

(30) with the help of the Laplace transform table [9]. The result of 
carrying out the inverse Laplace transform of eqn. (30) is not simple and 
the behavior of the resulting output signal pS,(t) varies to a great extent 
depending on the values of the parameters Kp, Kr and KD. We cannot 
determine exactly the variation of the output signal as a function of time, 
because the values of the parameters have not been described in the 
literature. However, the system of which the Laplace transform is given 
by eqn. (29) is called a second-order system and the important features of 
the behavior of the output signal. ,pS,(t) are studied in relation to the 
characteristic eqn. (33) of the system [lo] 

A=(K,+C)s2+(Kp+h)s+KI=0 (33) 

When the two roots of eqn. (33) are imaginary, pS,(t) shows damped 
vibration. When the roots are real, it gradually approaches v0 with or 
without an overshoot. Figure 5 illustrates three typical curves of pS,(t). 

PROPORTIONALITY RELATION BETWEEN TOTAL ENTHALPY CHANGE 
AND PEAK AREA 

By assuming the condition 

I-40) =I@) =0 (34) 

and that the integrals take finite values, we get eqn. (35) by integrating 
eqn. (17) 

AH = 
I 

-v(t) dt= (’ + K, 
0 

K (35) 

where AH is the overall .enthalpy change and 1: p(t) dt is the peak area in 
a chart recording variation of output signal p(t). 
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Rewriting eqn. (29), we have 

K&(s) + K&r) + K,D(s) = (K, + C)S$(S) + (K, + h)@(s) + K&s) 

(36) 

Applying the inverse Laplace transform to the both sides of eqn. (36) 
under zero initial conditions, we obtain 

K d*W + K 

D dt* 

Assuming conditions 
(37) 

V(0) = V’(0) = V(W) = v’(a) = 0 (38) 

p(0) =p’(O) =p(a) =p’(w) = 0 (39) 

and that the integrals take finite values, we get eqn. (40) by integrating 
both sides of eqn. (37) 

AH=[ti(I)df=[p(r)dr (40) 

Both eqns. (35) and (40) show that the peak area of the output signal is 
proportional to the enthalpy change. Equation (40) shows that the peak 
area of the output signal from a PID temperature controlled sample 
holder is exactly equal to the enthalpy change, while eqn. (35) shows that 
the peak area of the output signal from a proportional temperature 
controlled sample holder is not exactly equal to the enthalpy change and 
that a calibration experiment is required for exact measurement of the 
enthalpy change from observed peak area in the proportional temperature 
controlled system. 

When the input signal and the output signal are not continuous at t = 0, 
for example if there is a pulse or step function of t, a more sophisticated 
treatment has to be given and the proportional relation is also valid in a 
system represented by a linear ordinary differential equation with constant 
coefficients [ 111. 
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